APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 545-555    DOI: 10.1007/s11770-018-0691-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
圆锥型场源瞬变电磁法测量数据反演
杨海燕1,李锋平2,Chen Shen-En3,岳建华2,郭福生1,陈晓1,张华1
1. 东华理工大学省部共建核资源与环境国家重点实验室培育基地,江西南昌 330013
2. 中国矿业大学资源与地球科学学院,深部岩土力学与地下工程国家重点实验室,江苏徐州 221116
3. Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte 28223, USA
An inversion of transient electromagnetic data from a conical source
Yang Hai-Yan1, Li Feng-Ping2, Chen Shen-En3, Yue Jian-Hua2, Guo Fu-Sheng1, Chen Xiao1, and Zhang Hua1
1. State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
2. School of Resource and Earth Science, State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221006, China.
3. Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte 28223, USA.
 全文: PDF (928 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 瞬变电磁法多匝小线圈装置是应用于地下有限空间、复杂地表地形的有效装置,但该装置的重叠绕制方式使其互感影响大,关断时间长。与之相比,我们提出的圆锥型场源的电感弱,关断时间短,可以有效兼顾减弱互感和适应复杂地形 针对圆锥型场源场值,我们基于叠加原理,采用汉克尔变换和数值滤波法对层状介质中圆锥型场源进行了正演,验证了该场源的优势、探索了其激发的瞬变场特征,但由其激发的数据处理方法研究仍显不足。基于此,本文开展了根据“烟圈”反演结果设定初始模型的阻尼最小二乘反演方法研究。对瞬变电磁正演所获得的视电阻率进行“烟圈”反演,以“烟圈”反演结果设定的初始模型在频率域内进行了阻尼最小二乘反演。同时,从初始模型角度对阻尼最小二乘反演方法进行了改进,提出了以“烟圈”反演曲线的极值点和拐点为基点,建立阻尼最小二乘反演初始模型的方法。理论数据与实测数据反演结果表明,所研究的反演方法不仅使反演电阻率和层厚得到改善,也弥补了常规“烟圈”反演不具有分层效果的缺点,可以获得相对满意的层状反演结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词瞬变电磁法   圆锥型场源   “烟圈”反演   阻尼最小二乘反演   视电阻率     
Abstract: Multiturn coils is an effective transmitter for transient electromagnetic method (TEM) used in narrow space and complex terrain at presently. However, its high mutual inductance coupling and long turn-off time affect the quality of later data processing and interpretation. Compared with multiturn coils, the new conical source has low mutual inductance and short turn-off time. Based on the superposition principle, we use Hankel transform and numerical filtering method for forward modelling of the conical source field in the layered-media and explore TEM characteristics excited by this source. We apply improved damped least square inversion to integrated transient electromagnetic (TEM) data. We first invert the induced voltage into similar resistivity and apparent depth, and then use the inverted results as input parameters in the initial model and transform the apparent resistivity data into the frequency domain. Then, damped least square inversion is performed in the frequency domain using the initial model. Subsequently, we use automated model building to search for the extremes and inflection points in the resistivity–depth data that are treated as critical layer parameters. The inversion of theoretical and observed data suggests that the method modifies the resistivity and depth and yields a model of the underground layers.
Key wordsTransient electromagnetic method   cone-shaped source   smoking-ring inversion   damped least square inversion   apparent resistivity   
收稿日期: 2017-05-09;
基金资助:

本研究由国家自然科学基金项目(编号:41564001、41674133、41572185和41604104)和江西省杰出青年人才资助计划(编号:20171BCB23068)联合资助。

引用本文:   
. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
. An inversion of transient electromagnetic data from a conical source[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 545-555.
 
[1] Al-Baali, M., and Fletcher, R., 1985, Variational method for non-linear least square: Journal of the Operational Research Society, 36(5), 405−421.
[2] Cheng, J. L., Li, M. X., Xiao, Y. L., et al., 2014, Study on particle swarm optimization inversion of mine transient electromagnetic method in whole-space: Chinese J. Geophys. (in Chinese), 57(10), 3478−3484.
[3] Constable, S. C., Parker, R. L., and Constalbe, C. G., 1987, Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52(3), 289-300.
[4] Fan, T., Li, W. G., Wang, P., et al., 2013, Research on fine interpretation for water containment of coal mine rock strata by MT imitated TEM depth inversion method: Journal of China Coal Society (in Chinese), 38(sup1.), 129-135.
[5] Golub, G., and Pereyra, V., 2003, Separable nonlinear least squares: The variable projection method and its applications: Inverse Problems, 19(2), R1-R26.
[6] Guptasarma, D., and Singh, B., 1997, New digital linear filters for Hankel J0 and J1 transforms: Geophysical Prospecting, 45(5), 745-762.
[7] Jiang, B. Y., 1998, Applied near zone magnetic source transient electromagnetic exploration: Geological Publishing House, Beijing.
[8] Knight, J. H., and Raiche, A. P., 1982, Transient electromagnetic calculations using the Gaver-Stehfest inverse Laplace transform method: Geophysics, 47(1), 47-50.
[9] Li, C. S., Zhang, Y. P., Li, S., et al., 2001, New Inversion Method of artificial neural network in transient electromagnetic inversion: Journal of Xi’an Jiao Tong University (in Chinese), 35(6), 604-615.
[10] Li, X., 2002, Theory and application of transient electromagnetic method: Science and Technology Press, Shanxi.
[11] Li, X., Xue, G. Q., and Song, J. P., 2005, Application of the adaptive shrinkage genetic algorithm in the feasible region to TEM conductive thin layer inversion: Applied Geophysics, 2(4), 204-210.
[12] Li, X., Xue, G. Q., and Guo, W. B., 2007, Research progress in TEM pseudo-seismic imagine: Progress in Geophysics, 22(3), 811-816.
[13] Liu, J. X., Tong, X. Z., Guo, R. W., et al., 2012, Magnetotelluric sounding exploration: Data processing inversion and interpretation: Science Press, Beijing.
[14] Liu, Y., Wang, X. B., and Wang, Y., 2013, Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation: Applied Geophysics, 10(2), 134-144.
[15] Li, F. P., 2017, Theoretical study on response characteristics of cone-shaped source in transient electromagnetic method: MSc. Thesis, East China University of Technology, Nanchang.
[16] Marquardt, D. W., 1963, An algorithm for least-squares estimation of nonlinear parameters: Journal of the Society for Industial & Applied Mathematics, 11(2), 431-441.
[17] Morrison, H. F., Phillips, R. J., O’Brien, D. P., et al., 1969, Quantitative interpretation of transient electromagnetic fields over a layered half-space: Geophysical Prospecting, 17(1), 82−101.
[18] Meju, M. A., 1996, Joint inversion of TEM and distorted MT soundings: Some effective practical considerations: Geophysics, 61(1), 56-65.
[19] Meju, M. A., 2005, Simple relative space-time scaling of electrical and electromagnetic depth sounding arrays: implications for electrical static shift removal and joint DC-TEM data inversion with the most-squares criterion: Geophysical Prospecting, 53(4), 463-479.
[20] Nabighian, M. N., 1979, Quasi-static transient response of a conducting half-space - An approximate representation: Geophysics, 44(10), 1700-1705.
[21] Niu, Z. L., 2007, The theory of time domain electromagnetic methods: Central South University of Technology Press, Changsha.
[22] Nie, L. C., Li, S. C., Liu, B., et al., 2012, Fast inversion for advanced detection using induced polarization in tunnel: Chinese Journal of Geotechnical Engineering, 34(2), 222-229.
[23] Raiche, A. P., and Gallagher, R. G., 1985, Apparent resistivity and diffusion velocity: Geophysics, 50(10), 1628-1633.
[24] Rodi, W., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66(1), 174-187.
[25] Sternberg, B. K., Washburne, J. C., and Pellerin, L., 1988, Correction for the static shift in magnetotellurics using transient electromagnetic soundings: Geophysics, 53(11), 1459-1468.
[26] Tang, R. J., Wang, X. B., and Gan, L., 2017, A damped least square inversion for MT utilizing eigenvalue property: Geophysical Prospecting For Petroleum (in Chinese), 56(6), 898-904.
[27] Tang, X. G., Hu, W. B., and Yan, L. J., 2011, Topographic effects on long offset transient electromagnetic response: Applied Geophysics, 8(4), 277-284.
[28] Wang, H. J., 2004, Digital filtering algorithm of sine and cosine transform: Chinese Journal of Engineering Geophysics (in Chinese), 1(4), 329-335.
[29] Wang, H. J., 2008, Time domain transient electromagnetism all time apparent resistivity translation algorithm: Chinese Journal of Geophysics, 51(6), 1936-1942.
[30] Xue, G. Q., Li, X., Guo, W. B., et al., 2006, Equivalent transformation from TEM field sounding data to plane-wave electromagnetic sounding data: Chinese J. Geophys (in Chinese), 49(5), 1539-1545.
[31] Yao, Y., 2002, Basic Theory and Application of Geophysical Inversion: China University of Geosciences Press, Wuhan.
[32] Yang, H. Y., Deng, J. Z., Tang, H. Z., et al., 2014, Translation algorithm of data interpretation technique in full-Space transient electromagnetic method: Journal of Jilin University (in Chinese), 44(3), 1012-1017.
[33] Yang, H. Y., Li, F. P., Yue, J. H., et al., 2017, Cone-shaped source characteristics and inductance effect of transient electromagnetic method: Applied Geophysics, 14(1), 165-174.
[34] Yang, Y. J., He, Z. X., Wang, X. B., et al., 2008, A discussion on the inversion of combined vertical electrical sounding and central-loop TEM data: Geophysical and Geochemical Exploration (in Chinese), 32(4), 442-444.
[35] Zhou, N. N., Xue, G. Q., and Wang, H. Y., 2013, Comparison of the time-domain electromagnetic field from an infinitesimal point charge and dipole source: Applied Geophysics, 10(3), 349-356.
[1] 杨海燕,李锋平,岳建华,郭福生,刘旭华,张华. 瞬变电磁法圆锥型场源特征与电感效应[J]. 应用地球物理, 2017, 14(1): 165-174.
[2] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[3] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司