APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 513-523    DOI: 10.1007/s11770-018-0702-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于泊松方程的空间波数混合域重力异常三维数值模拟
戴世坤1,2,赵东东1,2,张钱江3,李昆1,2,陈轻蕊1,2,王旭龙1,2
1. 中南大学地球科学与信息物理学院,长沙 410083
2. 有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),长沙 410083
3. 桂林理工大学地球科学学院,桂林 541004
Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain
Dai Shi-Kun1,2, Zhao Dong-Dong1,2, Zhang Qian-Jiang3, Li Kun1,2, Chen Qing-Rui1,2, and Wang Xu-Long1,2
1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China.
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education  (Central South University), Changsha 410083, China.
3. School of College of Earth Sciences of Guilin university of technology, Guilin 541004, China.
 全文: PDF (724 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在重力勘探中,面向实际应用的数值模拟计算量和存储量巨大,很难对起伏地形条件下大规模复杂地质模型实现高效、精细化反演成像。 针对这一问题,本文提出一种适用于起伏地形条件下的空间波数混合域重力异常三维数值模拟方法。该方法利用二维傅里叶变换把空间域引力位满足的三维偏微分方程转化为不同波数满足的一维常微分方程,不同波数之间常微分方程相互独立,具有高度并行性;同时保留垂向为空间域,适应复杂地形模拟需求;采用有限单元法求解不同波数满足的常微分方程,充分利用追赶法求解定带宽线性方程组的高效性以进一步提高计算效率。在数值试验中,本文设计了棱柱体模型,通过数值解与解析解的对比验证了本文方法的正确性和可靠性;研究了水平地形和起伏地形条件下基于不同傅里叶变换的空间波数混合域重力异常三维数值方法计算精度与计算效率。数值试验结果表明:基于Gauss-FFT的空间波数混合域数值模拟精度高。综合考虑计算精度与计算效率,基于标准FFT扩边的空间波数混合域数值模拟更有利于起伏地形条件下反演成像与定量解释。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词起伏地形   重力异常   空间波数混合域   三维   数值模拟     
Abstract: In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable 3D numerical modeling method for gravity anomalies in space-wavenumber mixed domain. By performing a two-dimensional Fourier transform in the horizontal directions, three-dimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. This method preserves the vertical component in the space domain, which is beneficial when modeling complex topography. The finite element method was used to solve the transformed differential equations with different wave numbers, and the efficiency of solving fixed-bandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain.
Key wordsTopography   gravity anomaly   space-wavenumber mixing domain   three-dimensional   numerical modeling   
收稿日期: 2018-04-16;
基金资助:

本研究由国家自然科学基金项目(编号:41574127)、中国博士后基金(编号:2017M622608)和中南大学研究生自主探索创新项目(重点项目:2017zzts008)联合资助。

引用本文:   
. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
. Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 513-523.
 
[1] Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: Cambridge University Press, London, 128-153.
[2] Cai, Y., and Wang, C. Y., 2005, Fast finite-element calculation of gravity anomaly in complex geological regions: Geophysical Journal of the Royal Astronomical Society, 162(3), 696-708.
[3] Cg Farquharson, C. M., 2009, Three-dimensional modelling of gravity data using finite differences: Journal of Applied Geophysics, 68(3), 417-422.
[4] Chakravarthi, V., Raghuram, H. M., and Singh, S. B., 2002, 3-d forward gravity modeling of basement interfaces above which the density contrast varies continuously with depth: Computers & Geosciences, 28(1), 53-57.
[5] Chai, Y., and Hinze, W. J., 1988, Gravity inversion of interface above which the density contrast waries exponentially with depth: Geophysics, 53(6), 837-845.
[6] Chai, Y. P., 1997, Shift sampling theory and its applications: Petroleum Industry Press, Beijing, 15-74.
[7] Feng, R., 1986, The potential field calculation of the three-dimensional physical distribution: Chinese J. Geophys.(in Chinese), 29(4), 399-406.
[8] Forsberg, R., 1985, Gravity field terrain effect computations by fft: Bulletin Géodésique, 59(4), 342-360.
[9] García-Abdeslem, J., 2005, The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial: Geophysics, 70(6), J39-J42.
[10] Granser, H., 1987, Nonlinear inversion of gravity data using the schmidt-lichtenstein approach: Geophysics, 52(1), 88-93.
[11] Holstein, H., 2002, Gravimagnetic similarity in anomaly formulas for uniform polyhedra: Geophysics, 67(4), 1125-1133.
[12] Jahandari, H., and Farquharson, C. G., 2013, Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids: Geophysics, 78(3), G69-G80.
[13] Jian, Z., Wang, C. Y., Shi, Y., Cai, Y., Chi, W. C., and Douglas, D., 2004, Three-dimensional crustal structure in central taiwan from gravity inversion with a parallel genetic algorithm: Geophysics, 69(4), 917-924.
[14] Nagy, D., 1966, The gravitational attraction of a right rectangular prism: Geophysics, 31(2), 362-371.
[15] Nagy, D., Papp, G., and Benedek, J., 2000, The gravitational potential and its derivatives for the prism: Journal of Geodesy, 74(7-8), 552-560.
[16] Okabe, M., 1979, Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies: Geophysics, 44(4), 730-741.
[17] Paul, M. K., 1974, The gravity effect of a homogeneous polyhedron for three-dimensional interpretation: Pure & Applied Geophysics, 112(3), 553-561.
[18] Pedersen, L. B., 1978a, A statistical analysis of potential fields using a vertical circular cylinder and a dike: Geophysics, 43(5), 943-953.
[19] Pedersen, L. B., 1978b, Wavenumber domain expressions for potential fields from arbitrary 2-, 21/2 -, and 3- dimensional bodies: Geophysics, 43(3), 626-630.
[20] Pedersen, L. B., 1985, The gravity and magnetic feilds from ellipsoidal bodies in the wavenumber domain: Geophysical Prospecting, 33(2), 263-281.
[21] Plouff, D., 1976, Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections: Geophysics, 41(4), 727-741.
[22] Rao, D. B., Prakash, M. J., and Babu, N. R., 1993, Gravity interpretation using fourier-transforms and simple geometrical models with exponential density: Geophysics, 58(8), 1074-1083.
[23] Singh, B., and Guptasarma, D., 2001, New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra: Geophysics, 66(66), 521-526.
[24] Talwani, M., 1960, Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape: Geophysics, 25(1), 203-225.
[25] Tontini F. C., Cocchi, L., and Carmisciano, C., 2009, Rapid 3-D forward model of fields with application to the palinuro seamount gravity anomaly(sourthern tyrrhenian sea, Italy): Journal of Geophysical Research: Solid Earth (1978-2012), 114(B2), 1205-1222.
[26] Wu, X. Z., 1983, The computation of spectrum of potential field due to 3-D arbitrary bodies with physical parameters varying with depth: Chinese J. Geophys. (in Chinese), 26(02), 177-187.
[27] Wu, L. Y., and Tian, G., 2014, High-precision Fourier forward modeling of potential field: Geophysics, 79(5), G59-G68.
[28] Wu, L. Y., 2016, Efficient modelling of gravity effects due to topographic masses using the Gauss-FFT method: Geophysical Journal International, 205(1), 160-178.
[29] Xiong, G. C., 1984, Some problems about 3-D fourier transforms of the gravity and magnetic fields: Chinese J. Geophys (in Chinese), 1(01), 103-109.
[30] Xu, S. Z., 1994, The Finite Element Method in Geophysics: Science Press, Beijing, 6-98.
[31] Zhao, S. K., and Yedlin, M. J., 1991, Chebyshev expansions for the solution of the forward gravity problem: Geophysical Prospecting, 39(6), 783-802.
[32] Zeng, H. L., 2005, Gravity field and gravity exploration: Geological Publishing House, Beijing, 1-35.
[1] 荆磊,姚长利,杨亚斌,徐梦龙,张光之,纪若野. 三维重力快速反演的优化算法*[J]. 应用地球物理, 2019, 16(4): 514-525.
[2] 马永, 毕金孟, 高磊. 宜宾地区三维速度结构及震区构造特征*[J]. 应用地球物理, 2019, 16(3): 269-277.
[3] 韩超,余嘉顺,刘伟祖,原健龙,付小波,侯小平. 芦山沫东地震动放大特征的数值模拟研究*[J]. 应用地球物理, 2019, 16(3): 278-292.
[4] 李勤, 马随波, 赵斌, 章薇. 基于煤层的改进的旋转交错网格有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4(2)): 582-590.
[5] 陈欣,陈龙伟,熊彬,罗天涯. 任意截面形状和密度分布的二度体重力异常正演快速算法[J]. 应用地球物理, 2018, 15(3-4(2)): 657-667.
[6] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[7] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[8] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[9] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[10] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[11] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[12] 李静和,何展翔,徐义贤. 油气藏开发监测中地-井三维电磁法的数值模拟研究[J]. 应用地球物理, 2017, 14(4): 559-569.
[13] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[14] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[15] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司