APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 500-512    DOI: 10.1007/s11770-018-0690-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
起伏面磁场及其梯度张量快速三维正演方法
李昆1,2,3,陈龙伟4,陈轻蕊1,2,3,戴世坤1,2,3,张钱江1,2,3,4,赵东东1,2,3,凌嘉宣1,2,3
1. 有色资源与地质灾害探查湖南省重点实验室,长沙 410083
2. 中南大学有色金属成矿预测与地质环境监测教育部重点实验室,长沙 410083
3. 中南大学地球科学与信息物理学院,长沙 410083
4. 桂林理工大学地球科学学院,桂林 541004
Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface
Li Kun1,2,3, Chen Long-Wei4, Chen Qing-Rui1,2,3, Dai Shi-Kun1,2,3, Zhang Qian-Jiang1,2 ,3,4, Zhao Dong-Dong1,2,3, and Ling Jia-Xuan1,2,3
1. Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha 410083, China.
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, Central South University, Changsha 410083, China.
3. School of Geosciences and Info-Physics of Central South University, Changsha 410083, China.
4. School of College of Earth Sciences of Guilin University of Technology, Guilin 541004, China.
 全文: PDF (1758 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 磁梯度张量测量技术为实现精细反演地下磁化率分布提供了丰富的数据,高效高精度的正演方法是大规模磁测数据反演成像的基础。针对任意磁化率分布、起伏面磁场及其梯度张量三维正演问题,本文提出了一种快速波数域三维正演方法,其关键环节包括:(1)结合棱柱体组合模型波数域表达式和Gauss-FFT算法,提出一种任意磁化分布情况下平面磁场及其梯度张量快速三维正演算法;(2)利用平面三维正演算法,计算多个高度平面磁场及其梯度张量,结合三次样条插值方法,实现起伏面磁场及其梯度张量三维正演。在此过程中,提出一种多个高度面情况下波数域加权系数快速计算方法,进一步提高了起伏面情况下三维正演的计算效率。通过设计不同模型算例,验证了新方法的计算精度和效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词起伏面   磁场   梯度张量   三维正演   Gauss–FFT算法   波数域     
Abstract: Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy for forward modeling. For arbitrarily distributed susceptibility data on an undulated surface, we propose a fast 3D forward modeling method in the wavenumber domain based on (1) the wavenumber-domain expression of the prism combination model and the Gauss–FFT algorithm and (2) cubic spline interpolation. We apply the proposed 3D forward modeling method to synthetic data and use weighting coefficients in the wavenumber domain to improve the modeling for multiple observation surfaces, and also demonstrate the accuracy and efficiency of the proposed method.
Key wordsUndulated surface   magnetic field   gradient tensor   3D forward modeling   Gauss–FFT algorithm   wavenumber domain   
收稿日期: 2018-01-02;
基金资助:

本研究由国家十三五专项计划(编号:2017YFC0602204-10)、中南大学研究生自主探索创新项目(编号:2017zzts176)、国家自然科学基金项目(编号:41574127、41404106和41674075)、中国博士后基金面上资助(编号:2017M622608)、国家重点研发计划(编号:2018YFC0603602)和湖南省自然科学青年基金(编号:2018JJ3642)联合资助。

引用本文:   
. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
. Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 500-512.
 
[1] Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: Cambridge University Press.
[2] Burrows, B. L., and Colwell, D. J., 1990, The fourier transform of the unit step function: International Journal of Mathematical Education in Science and Technology, 21(4), 629-635.
[3] Chen, Z. X., Meng, X. H., and Liu, G. F., 2012, The GPU-based parallel calculation of gravity and magnetic anomalies for 3D arbitrary bodies: Geophysical and Geochemical Exploration, 36(1), 117-121.
[4] Chai, Y. P., 1996, Shift sampling theory about Fourier transform computation: Science in China (Series E), 26(5), 450-456.
[5] Eppelbaum, L. V., 2011, Study of magnetic anomalies over archaeological targets in urban environments: Physics & Chemistry of the Earth, 36(16), 1318-1330.
[6] Furness, P., 1994, A physical approach to computing magnetic fields: Geophysical Prospecting, 42(5), 405-416.
[7] Kangaziyan, M., Oskooi, B., and Namaki, L., 2012, Investigation of Topographic Effect on Synthetic Magnetic Data: Istanbul 2012-International Geophysical Conference and Oil & Gas Exhibition., 1-4.
[8] Li, S. L., and Li, Y. G., 2014, Inversion of magnetic anomaly on rugged observation surface in the presence of strong remanent magnetization: Geophysics, 79(2), J11-J19.
[9] Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., et al., 2005, The historical development of the magnetic method in exploration: Geophysics, 70(6), 33-61.
[10] Naidu, P. S., and Mathew, M. P., 1994, Correlation filtering: a terrain correction method for aeromagnetic maps with application: Journal of Applied Geophysics, 32(2-3), 269-277.
[11] Prutkina, I., and Salehb, A., 2009, Gravity and magnetic data inversion for 3D topography of the Moho discontinuity in the northern Red Sea area: Egypt, J. Geodyn., 47(5), 237-245.
[12] Pedersen, L. B., Bastani, M., and Kamm, J., 2015, Gravity gradient and magnetic terrain effects for airborne applications -A practical fast Fourier transform technique: Geophysics, 80(2), J19-J26.
[13] Ren, Z. Y., Tang, J. T., and Kalscheuer, T., et al., 2017, Fast 3D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method: Journal of Geophysical Research, 122(1), 79-109.
[14] Singh, S. K., 1978, Magnetic Anomaly due to a Vertical Right Circular Cylinder with Arbitrary Polarization: Geophysics, 43(1), 173-178.
[15] Singh, B., and Guptasarma, D., 2001, New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra: Geophysics, 66(2), 521-526.
[16] Tontini, F. C., 2005, Magnetic-anomaly Fourier spectrum of a 3D Gaussian source: The Leading Edge, 70(1), L1-L5.
[17] Tontini, F. C., Cocchi, L., and Carmisciano, C., 2009, Rapid 3-D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy): Journal of Geophysical Research Solid Earth, 114(B2), 1205-1222.
[18] Ugalde, H., and Morris, B., 2008, An assessment of topographic effects on airborne and ground magnetic data: Leading Edge, 27(1), 76-79.
[19] Wang, Y. Z., Wang, R. Q., and Chen, X. H., 2006, Signal analysis and processing: Petroleum Industry Press, China, 46-47.
[20] Wu, L. Y., and Tian, G., 2014, High-precision Fourier forward modeling of potential fields: Geophysics, 79(5), 59-68.
[21] Wu, L. Y., 2016, Efficient modelling of gravity effects due to topographic masses using the Gauss FFT method: Geophysical Journal International, 205(1), 160-178.
[22] Wu, L. Y., and Lin, Q., 2017, Improved Parker’s method for topographic models using Chebyshev series and low rank approximation: Geophysical Journal International, 209(2), 1296-1325.
[23] Wu, X. Z., 1983, The computation of spectrum of potential field due to 3-D arbitrary bodies with physical parameters varying with depth: Chinese Journal of Geophysics, 26(2), 177-187.
[24] Yao, C. L., Hao, T. Y., Guan, Z. N., et al., 2003, High-speed computation and efficient storage in 3-D gravity and magnetic inversion based on genetic algorithms: Chinese Journal of Geophysics, 46(2), 351-361.
[1] 冯彦,姜云杉,顾嘉琳,徐凡,姜乙,刘爽. 基于协方差矩阵的地磁场急变特征提取研究[J]. 应用地球物理, 2019, 16(2): 154-160.
[2] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[3] 冯彦,蒋勇. 千年尺度的中国大陆及邻近区域非偶极子磁场的时空变化研究[J]. 应用地球物理, 2017, 14(2): 314-321.
[4] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[5] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[6] 匡星涛,杨海,朱晓颖,李伟. 起伏地形条件下长方体磁场无解析奇点表达式[J]. 应用地球物理, 2016, 13(2): 238-248.
[7] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
[8] 孟庆鑫, 潘和平, 骆淼. 关于求解地层介质中瞬变电磁场的离散镜像方法研究[J]. 应用地球物理, 2015, 12(4): 493-502.
[9] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[10] 袁园, 黄大年, 余青露, 耿美霞. 全张量重力梯度数据滤波处理[J]. 应用地球物理, 2013, 10(3): 241-250.
[11] 蒋甫玉, 黄岩, 燕轲. 由重力异常计算重力全梯度张量的余弦变换法[J]. 应用地球物理, 2012, 9(3): 247-260.
[12] 蒋甫玉, 高丽坤. 基于改进的小子域滤波的重力异常及重力梯度张量边缘增强[J]. 应用地球物理, 2012, 9(2): 119-130.
[13] 陈学华, 杨威, 贺振华, 钟文丽, 文晓涛. 三维多尺度体曲率的算法及应用[J]. 应用地球物理, 2012, 9(1): 65-72.
[14] 李淑玲, 孟小红, 郭良辉, 姚长利, 陈召曦, 李和群. 南海重磁异常特征及火成岩分布[J]. 应用地球物理, 2010, 7(4): 295-305.
[15] 柴玉璞. 位场波数域转换算法误差方程及其应用[J]. 应用地球物理, 2009, 6(3): 205-216.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司