APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 481-490    DOI: 10.1007/s11770-018-0672-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
连续谱比斜率法叠前CMP道集Q值估计
吴宗蔚1,伍翊嘉1,徐明华1,郭思1,2
1. 中国石油集团公司川庆钻探工程有限公司地质勘探开发研究院,四川成都 610051
2. 电子科技大学资源与环境学院,成都 610000
Q-factor estimation in CMP gather and the  continuous spectral ratio slope method
Wu Zong-Wei1, Wu Yi-Jia1, Guo Si1,2, and Xu Ming-Hua1
1. Geological Exploration & Development Research Institute, CCDE, CNPC, Chengdu 610051, China.
2. University of Electronic Science and Technology of China, School of Resources and Environment, Chengdu 610000, China.
 全文: PDF (1498 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对地震波在地下介质中传播时产生吸收衰减的特性,在基于广义S变换的叠前Q值反演方法的基础上,提出了一种新的吸收系数计算方法。该算法提出使用设定标准初始子波求取累积Q值,再根据Q值与偏移距关系(QVO)线性关系和Dix公式求取零偏移距层间Q值的方法,代替拾取层位后求取叠前层间Q值的方法。在这种情况下,求取谱比斜率的层位界面可为连续的,故称此方法为连续谱比斜率法。与前人的Q值反演方法相比,本文提出的地震波吸收系数新算法易于计算,极大程度上克服了过去方法频谱比求取的不稳定性。通过数值模拟验证了该算法的可行性,将此算法运用在伊拉克艾哈代布油田的实际地震资料中,结果表明本文提出的Q值提取新方法能有效提高Q值剖面分辨率,能正确反映地层对地震波能量的吸收能力,层间信息更加丰富,空间横向稳定性提高,为后续岩性预测及流体识别提供了可靠依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词品质因子   叠前Q值提取   广义S变换   谱比斜率法   QVO关系     
Abstract: The attenuation factor or quality factor (Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset (QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope (CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.
Key wordsQuality factor   prestack Q estimation   generalized S transform   spectral ratio slope method   Q versus offset   
收稿日期: 2018-02-12;
基金资助:

本研究由国家重点研发计划(编号:2017YFC0601505)、国家自然科学基金(编号:41672325)和四川省科技厅支持计划项目(编号:2017GZ0393)资助。

引用本文:   
. 连续谱比斜率法叠前CMP道集Q值估计[J]. 应用地球物理, 2018, 15(3-4): 481-490.
. Q-factor estimation in CMP gather and the  continuous spectral ratio slope method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 481-490.
 
[1] Adams, M., Kossentini, F., and Ward, R. K., 2001, Generalized S transform: IEEE Transactions on Signal Processing, 50(11), 2831−2842.
[2] An, Y., 2015, Fracture prediction using prestack Q calculation and attenuation anisotropy: Applied Geophysics, 12(3), 432−440.
[3] Bath, B. M., 1974, Spectral analysis in geophysics: Elsevier, Netherlands. .
[4] Chen, K. G., Wang, W. W., Guo, J. Q., Qiu, C. N., and Wang, H. F., 2008, Study on the acoustic absorption characteristics of homogeneous gas-bearing sandstone: Well Logging Techonlogy (in Chinese), 32(02), 152−154, 163.
[5] Dasgupta, R., and Clark, R. A., 1998, Estimation of Q from surface seismic reflection data: Geophysics, 63(6), 2120−2128.
[6] Futterman, W. I., 1962, Dispersive body waves: Journal of Geophysical Research, 67(13), 5279−5291.
[7] Gao, J. H., Yang, S. L., and Wang, D. X., 2008, Quality factor extraction using instantaneous frequency at envelope peak of direct waves of VSP data: Chinese Journal of Geophysics, 51(03), 853−861.
[8] Hauge, P. S., 1981, Measurements of attenuation from vertical seismic profiles: Geophysics, 46, 1548-1558.
[9] Jiang, H. T., 2011, Forward and inverse method of attenuation features of pre-stack CMP gather: Master Thesis, Chang'an University, Xi’an.
[10] Kaderali, A., Jones, M., and Howlett, J., 2007, White Rose seismic with well data constraints: A case history. The Leading Edge: 26(6), 742−750, 752−754.
[11] Kjartansson, E., 1979, Constant Q-wave propagation and attenuation: Journal of Geophysical Research, 84(B9), 4737−4748.
[12] Rainer, T., 1991, The determination of the seismic Quality factor Q from VSP data: A comparison of different computational methods: Geophysical Prospecting, 1991, 39(1), 1-27.
[13] Reine, C., Clark, R., and Mirko, V. D. B., 2012, Robust pre-stack Q-determination using surface seismic data, part1: method and synthetic examples: Geophysics, 77(1), R45-R56.
[14] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: the S transform: IEEE Transactions on Signal Processing, 44(4), 998−1001.
[15] Tu, N., and Lu, W. K., 2010, Improve Q estimates with spectrum correction based on seismic wavelet estimation. Applied Geophysics, 7(3), 217−228.
[16] TW Spencer, 1982, Seismic Q-stratigraphy or dissipation: Geophysics, 47(47), 16−24.
[17] Wang, D. Y., Huang, J. P., Kong, X., Li, Z. C., and Wang, J., 2017, Improving the resolution of seismic traces based on the secondary time-frequency spectrum: Applied Geophysics, 14(2), 236−246.
[18] Wang, X. J., Yin, X. Y., and Wu, G. C., 2011, Estimation of quality factors Q from pre-stack data: Oil Geophysical Prospecting (in Chinese), 46(03), 423−428+500+327.
[19] Wang, Y. H., 2003, Quantifying the effectiveness of stabilized inverse Q filtering: Geophysics, 68(1), 337−345.
[20] Wang, Y. H., 2006, Inverse Q-filter for seismic resolution enhancement: Geophysics, 71(3), V51−V60.
[21] Wang, Z. J., Cao, S. Y., Zhang, H. R., et al., 2015, Estimation of quality factors by energy ratio method: Applied Geophysics, 12(1), 86-92.
[22] Ward, R. W., 1980, Mapping seismic attenuation within geothermal systems using teleseisms with application to the Geysers2 Clear Lake region: Geophys. Res., 85(B10), 5227−5236.
[23] Wei, W., Wang, X. J., and Li, H. M., 2011, A study on Q estimation from CMP gather in wavelet domain: Geophysical Prospecting for Petroleum, 50(4), 355-360.
[24] Wen, R. X., 2009, Frequency attenuation for gas potential prediction of the volcanic reservoirs in Qingshen gas field: Natural Gas Industry (in Chinese), 29(8), 26−28.
[25] Zhang, C. J., and Ulrych, T. J., 2002, Estimation of quality factors from CMP records: Geophysics, 67(5), 1542−1547.
[26] Zhao, J., Gao, J. H., Wang, D. X., and Wang, L. L., 2013, Estimation of quality factor Q from pre-stack CMP records: Chinese Journal of Geophysics, 56(7), 2413−2428.
[27] Zhao, W., and Ge, Y., 2008, Estimation of Q from VSP data with zero offset in wavelet domain: Chinese Journal of Geophysics (in Chinese), 51(04), 1202−1208.
[1] 曹丹平,李岳,孙文国,梁锴. 基于振幅和相位信息的地层品质因子联合反演方法研究[J]. 应用地球物理, 2019, 16(2): 210-220.
[2] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[3] 安勇. 叠前地震衰减各向异性的裂缝预测方法及应用[J]. 应用地球物理, 2015, 12(3): 432-440.
[4] 王宗俊, 曹思远, 张浩然, 曲英铭, 袁殿, 杨金浩, 张德龙, 邵冠铭. 能量比法提取品质因子Q[J]. 应用地球物理, 2015, 12(1): 86-92.
[5] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[6] 杨小慧, 曹思远, 李德春, 于鹏飞, 张浩然. 瑞利型槽波品质因子及特性分析[J]. 应用地球物理, 2014, 11(1): 107-114.
[7] 芦俊, 王赟. Kelvin粘弹性VTI介质中地震波的传播[J]. 应用地球物理, 2010, 7(4): 357-364.
[8] 屠宁, 陆文凯. 利用基于子波估计的频谱校正方法提高Q值估计精度[J]. 应用地球物理, 2010, 7(3): 217-228.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司