APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 466-480    DOI: 10.1007/s11770-018-0701-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于叠前PP-PS波联合广义线性反演的弹性模量提取方法
马琦琦1,孙赞东1
1. 中国石油大学(北京),地球物理与信息工程学院,北京 102249
Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion
Ma Qi-Qi1 and Sun Zan-Dong1
1. Lab for Integration of Geology and Geophysics, China University of Petroleum, Beijing 102249, China.
 全文: PDF (1626 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 纵波和转换波联合反演方法作为有效的地震技术,比单纯纵波反演精度要高,能够提高地震储层识别的精度。纵波模量和横波模量是进行储层评价、流体判别的重要弹性参数,然而常规估算弹性模量方法的局限性制约了反演精度和稳定性的提升。本文从精确的Zoeppritz方程出发,建立了纵波模量、横波模量与纵波、转换波的精确关系,有效降低了通过近似公式或者间接计算引入的误差,从而提高了反演结果的精度。在反演过程中,考虑到反演过程的不适定性和正演算子的非线性,结合广义线性反演方法,在目标函数中引入了模型参数的先验约束和改进的低频约束,并在求解目标函数时借助迭代反演的思想,不断优化背景速度比值,增加了反演过程的稳定性。经多种模型试算结果表明,该方法有效地提高了纵波模量、横波模量提取的精度和稳定性,为储层、流体预测提供了高质量的数据支持。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词叠前联合反演   纵横波模量   精确Zoeppritz方程   广义线性反演   储层流体预测     
Abstract: Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P- and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P- and S-wave moduli, a coefficient that describes the reflections of P- and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.
Key wordsPre-stack joint PP–PS inversion   P- and S-wave moduli   exact Zoeppritz equation   generalized linear inversion   reservoir and fluid prediction   
收稿日期: 2018-06-12;
基金资助:

本研究由国家科技重大专项课题(项目编号:2016ZX05047-002-001)资助。

引用本文:   
. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
. Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 466-480.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative Seismology Theory and Method: W. H. Freeman and Company, San Francisco, 296-297.
[2] Alemie, W., and Sacchi, M. D., 2011, High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution: Geophysics, 76, 43-55.
[3] Avseth, P., Mukerji, T. and Mavko, G., 2005, Quantitative Seismic Interpretation: Cambridge University Press, Cambridge, 236-237.
[4] Backus, G. E., and Gilbert, F., 1968, The resolving power of gross earth data: Geophysical Journal International, 16, 169-205.
[5] Bortfeld, R., 1978, Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves: Geophysical Journal of the Royal Astronomical Society, 53, 467-496.
[6] Buland, A., and Omre, H., 2003a, Joint AVO inversion, wavelet estimation an noise-level estimation using a spatially coupled hierarchial Bayesian model: Geophysical Prospecting, 51, 531-550.
[7] Buland, A., and Omre, H., 2003b, Bayesian linearised AVO inversion: Geophysics, 68, 185-198.
[8] Downton, J. E., 2005, Seismic parameter Estimation from AVO Inversion: PhD thesis, University of Calgary, Calgary.
[9] Du, Q. Z., and Yan, H. Z., 2013, PP and PS joint AVO inversion and fluid prediction: Journal of Applied Geophysics, 90, 110-118.
[10] Fang, Y., Zhang, F. Q., and Wang, Y. C., 2016, Generalized linear joint PP-PS inversion based on two constraints: Applied Geophysics, 13, 103-115.
[11] Fatti, J. L., Smith, G. C, Vail, P. J., Strauss, P. J., and Levitt, P. R., 1994, Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique: Geophysics, 59, 1362-1376.
[12] Goodway, B., Chen, T. W., and Downton, J., 1997, Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters: “λρ”, “μρ”, and “λ/μ fluid stack”, from P and S inversions: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 16, 183-186.
[13] Goodway, W., 2001, AVO and Lamé constants for rock parameterization and fluid detection: CSEG Recorder, 26, 39-60.
[14] Hansen, T. M., Mosegaard, K., Radmila, P. T., Uldall A., and Jacobsen, N. L., 2008, Attribute-guided well-log interpolation applied to low-frequency impedance estimation: Geophysics, 73, 83-95.
[15] Hou, D. J., Liu, Y., Hu, G. Q., Wei, X. C., and Chen, T. S., 2014, Prestack multiwave joint inversion for elastic moduli based on Bayesian theory: Chinese Journal of Geophysics, 57, 1251-1264.
[16] Hou, D. J., 2017, PP and PS AVO joint inversion for P- and S-wave moduli based on Bayes theorem: 87th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 768-772.
[17] Huang, H. D., Wang, Y. C., Guo, F., Zhang, S., Ji, Y. Z. and Liu, C. H., 2015, Zoeppritz equation-based prestack inversion and its application in fluid identification: Applied Geophysics, 12, 199-211.
[18] Jaime M., and Douglas, R. S., 2016, A comparative study of the anisotropic dynamic and static elastic moduli of unconventional reservoir shales: Implication for geomechanical investigations: Geophysics, 81, 245-261.
[19] Klaas, V., Gregor, E., Gregor B., and Ralf, W., 2010, Effect of carbonate pore structure on dynamic shear moduli: Geophysics, 75, 1-8.
[20] Kurt, H., 2007, Joint inversion of AVA data for elastic parameters by bootstrapping: Computers and Geosciences, 33, 367-382.
[21] Lu, J., Yang, Z., Wang, Y., and Shi, Y., 2015, Joint PP and PS AVA seismic inversion using exact Zoeppritz equations: Geophysics, 80, 239-250.
[22] Martin, G. S., Wiley, R., and Martfurt, K. J., 2006, Marmousi2: an elastic upgrade for Marmousi: The Leading Edge, 25, 156-166.
[23] Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook: Tools for seismic analysis in porous media: Cambridge University Press, Cambridge, 329.
[24] Ostrander, W. J., 1984, Plane-wave reflection coefficients for gas sands at non-normal angles of incidence: Geophysics, 49, 1637-1648.
[25] Quakenbush, M., Shang, B., and Tuttle, C., 2006, Poisson impedance: The Leading Edge, 25, 128-138.
[26] Rabben, T. E., and Ursin, B., 2000, Non-linear least-squares inversion with data-driven Bayesian regularization: Geophysical Journal International, 142, 43-72.
[27] Russell, B. H., Gray, D., and Hampson, D. P., 2011, Linearized AVO and poroelasticity: Geophysics, 76, 19-29.
[28] Smith, G. C., and Gidlow, P. M., 1987, Weighted stacking for rock property estimation and detection of gas: Geophysical Prospecting, 35, 993-1014.
[29] Stewart, R. R., 1990, Joint P and P-SV inversion: CREWES Research Report, 2, 112-115.
[30] Tang, J. and Wang, Y. F., 2017, PP and PS joint inversion with a posterior constraint and with particle filtering: Journal of Geophysics and Engineering, 14, 1399-1412.
[31] Viere, H. H., and Landro, M., 2006, Simultaneous inversion of PP and PS seismic data: Geophysics, 71, 1-10.
[32] Wang, B. L., Yin, X. Y., and Zhang, F. C., 2006, Lame parameters inversion based on elastic impedance ans its application: Applied Geophysics, 3, 174-178.
[33] Yilmaz, O., 2001, Seimic data analysis: Processing, Inversion, and Interpretation of seismic data: Society of Exploration, I, 133-141.
[34] Yin, X. Y., Sun, R. N., Wang, B. L., and Zhang, G. Z., 2014, Simultaneous inversion of petrophysical parameters based on geostatistical a priori information: Applied Geophysics, 11, 311-320.
[35] Zhang, F. Q., Wei, F. J., Wang, Y. C., Wang, W. J., and Li, Y., 2013, Generalized linear AVO inversion with the priori constraint of trivariate cauchy distribution based on Zoeppritz equation: Chinese Journal of Geophysics, 56, 2098-2115.
[36] Zhi, L. X., Chen, S. Q., Song, B. S., and Li, X. Y., 2018, Nonlinear PP and PS joint inversion based on the exact Zoeppritz equations: a two-stage procedure: Journal of Geophysics and Engineering, 15, 397-410.
[37] Zhou, L., Li, J., Chen, X., Liu, X., and Chen, L., 2017, Pre-stack AVA inversion of exact Zoeppritz equations based on modified trivariate Cauchy distribution: Journal of Applied Geophysic, 138, 80-90.
[38] Zoeppritz, K., 1919, On reflection and propagation of seismic waves: Gottinger Nachrichten, I: 66-84.
[39] Zong, Z. Y., Yin, X. Y., and Wu, G. C., 2012, AVO inversion and poroelasticity with P- and S-wave moduli: Geophysics, 6, 17-24.
[40] Zong, Z. Y., Yin, X. Y. and Wu, G. C., 2013, Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio: Geophysics, 78, 35-42.
[1] 方圆, 张丰麒, 王彦春. 基于双约束项的广义线性多波联合反演[J]. 应用地球物理, 2016, 13(1): 103-115.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司