APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (3-4): 420-431    DOI: 10.1007/s11770-018-0697-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟
成景旺1,2,范娜1,张友源1,吕晓春3
1. 长江大学地球物理与石油资源学院,湖北武汉 430100
2. 油气资源与勘探技术教育部重点实验室(长江大学),湖北武汉 430100
3. 华北水利水电大学资源与环境学院,河南郑州 450011
Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method
Cheng Jing-Wang1,2, Fan Na1, Zhang You-Yuan1, and Lü Xiao-Chun3
1. Geophysics and Oil Resource Institute, Yangtze University, Wuhan 430100, China.
2. Key Laboratory of Exploration Technologies for oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China.
3. College of Resources and Environment, North China University of Water Resources and Electric Power, Zhengzhou 450011, China.
 全文: PDF (1200 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 有限差分法计算效率高,在地震数值模拟中被广泛应用,但其不能灵活处理起伏地表。基于贴体网格的曲线坐标变换可用来解决该问题,如基于插值近似的标准交错网格(SSG, standard-staggered-grid)有限差分法、基于MacCormack类的同位网格中心差分法和满足交错分布的全交错网格有限差分法。与上述差分方法相比,旋转交错网格(RSG,rotated-staggered-grid)有限差分法满足曲线坐标系下波动方程的空间分布,不需要额外增加内存和计算量,实现过程简单。为此本文提出了采用旋转交错网格(RSG,rotated-staggered-grid)求解曲线坐标系下一阶应力-速度方程的方法,同时引入一种适合RSG的高精度单边仿真型有限差分(UMFD,unilateral mimetic finite difference)算子来处理起伏地表的自由边界条件。数值模拟结果显示,在RSG有限差分中,采用UMFD法处理自由边界得到的数值解比真空法精度高,且当最短波长内网格点较少时,在一定程度上能有效避免面波频散现象;RSG有限差分法、谱元法和MacCormack类同位网格法三种方法的模拟结果具有较高的一致性,但RSG有限差分法的计算效率比谱元法和MacCormack类同位网格法高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词起伏地表   贴体网格   旋转交错网格   仿真型有限差分     
Abstract: Finite-difference (FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid (SSG) with interpolation, nonstaggered grid, rotated staggered grid (RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the first-order stress–velocity equation in the curvilinear coordinates system and introduce the high-precision adaptive, unilateral mimetic finite-difference (UMFD) method to process the free-boundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.
Key wordsFinite difference   forward modeling   grid   staggered   rotated   body-fitted   surface   free boundary   
收稿日期: 2017-10-23;
基金资助:

本研究由国家自然科学基金(编号:41504102和41604037)、国家科技重大专项(编号:2016ZX05015-006)和长江大学长江青年基金(编号:2015cqn32)联合资助。

引用本文:   
. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
. Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 420-431.
 
[1] Appelo, D., and Petersson, N. A., 2009, A Stable Finite Difference Method for the Elastic Wave Equation on Complex Geometries with Free Surfaces: Communications in Computational Physics, 5(1), 84−107.
[2] Rojas, O., Otero, B., Castillo, J. E., and Day, S. M., 2014, Low dispersive modeling of Rayleigh waves on partly staggered grids: Computational Geosciences, 18(1), 29−43.
[3] Bogey, C., and Bailly, C., 2004, A family of low dispersive and low dissipative explicit schemes for flow and noise computations: Journal of Computational Physics, 194(1), 194−214.
[4] Saenger, E. H., and Bohlen, T., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69(2), 583−591.
[5] Bohlen, T., and Saenger, E. H., 2006, Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves: Geophysics, 71(4), T109−T115.
[6] Saenger, E. H., Gold, N., & Shapiro, S. A., 2000, Modeling the propagation of elastic waves using a modified finite-difference grid: Wave Motion, 31(1), 77−92.
[7] Castillo, J. E., Hyman, J. M., Shashkov, M., and Steinberg, S., 2001, Fourth- and sixth-order conservative finite difference approximations of the divergence and gradient: Applied Numerical Mathematics, 37(1−2), 171−187.
[8] Tarrass, I., Giraud, L., and Thore, P., 2011, New curvilinear scheme for elastic wave propagation in presence of curved topography: Geophysical Prospecting, 59(5), 889-906.
[9] Chaljub, E., Komatitsch, D., and Vilotte, J. P., 1998, The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures: Bulletin of the Seismological Society of America, 88(2), 368−392.
[10] Chen, H., Wang, X., and Zhao, H., 2006, A rotated staggered grid finite-difference with the absorbing boundary condition of a perfectly matched layer: Chinese Science Bulletin, 51(19), 2304−2314.
[11] Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W., 1985, Numerical grid generation: foundations and applications: Elsevier Science Publishing Co Inc, North-Holland, 1−300.
[12] Yan, H. Y., and Liu, Y., 2012, High-Order Finite-Difference Numerical Modeling of Wave Propagation in Viscoelastic TTI Media Using Rotated Staggered Grid: Chinese Journal of Geophysics, 55(2), 252−265.
[13] Fan, N., Zhao, L. F., Xie, X. B., Ge, Z., and Yao, Z. X., 2016, Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation: Geophysical Journal International, 206(3), 1539−1551.
[14] Hestholm, S., 2003, Elastic wave modeling with free surfaces: Stability of long simulation: Geophysics, 68(1), 314−321.
[15] Yang, Y., Huang, J. P., Lei, J. S., Li, Z. C., Tian, K., and Li, Q. Y., 2016, Numerical simulation of Lebedev grid for viscoelastic media with irregular free-surface: Oil Geophysical Prospecting, 51(4), 698−706.
[16] Hestholm, S., and Ruud, B., 1998, 3-D finite-difference elastic wave modeling including surface topography: Geophysics, 63(2), 613−622.
[17] Zhang, W., and Chen, X., 2006, Traction image method for irregular free surface boundaries in finite difference seismic wave simulation: Geophysical Journal International, 167(1), 337−353.
[18] Zhang, W., Zhang, Z., and Chen, X., 2012, Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids: Geophysical Journal International, 190(1), 358−378.
[19] Huang, J. P., Qu, Y. M., Li, Q. Y., Li, Z. C., Li, D. L., and Bu, C. C., 2015,Variable-coordinate forward modeling of irregular surface based on dual-variable grid: Applied Geophysics, 12(1), 101−110.
[20] Komatitsch, D., and Tromp, J., 1999, Introduction to the spectral element method for three-dimensional seismic wave propagation: Geophysical Journal of the Royal Astronomical Society, 139(3), 806−822.
[21] Zhang, Y., Ping, P., and Zhang, S. X., 2017, Finite-difference modeling of surface waves in poroelastic media and stress mirror conditions: Applied Geophysics, 14(1), 105−114.
[1] 王为中, 胡天跃, 吕雪梅, 秦臻, 李艳东, 张研. 弹性波变阶数旋转交错网格数值模拟[J]. 应用地球物理, 2015, 12(3): 389-400.
[2] 安圣培, 胡天跃, 崔永福, 段文胜, 彭更新. 起伏地表条件下复杂路径初至自动拾取[J]. 应用地球物理, 2015, 12(1): 93-100.
[3] 黄建平, 曲英铭, 李庆洋, 李振春, 李国磊, 步长城. 基于时空双变网格的起伏地表变坐标系正演模拟方法[J]. 应用地球物理, 2015, 12(1): 101-110.
[4] 兰海强, 张中杰. 起伏地表下流体填充裂缝的地震波场模拟[J]. 应用地球物理, 2012, 9(3): 301-312.
[5] 张凯, 李振春, 曾同生, 秦宁, 姚云霞. 基于起伏地表的层析速度反演方法研究[J]. 应用地球物理, 2012, 9(3): 313-318.
[6] 张敏, 李振春, 张华, 孙小东. 起伏地表无反射递推算法叠后逆时偏移[J]. 应用地球物理, 2010, 7(3): 239-248.
[7] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 0, (): 420-431.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司