APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 353-360    DOI: 10.1007/s11770-018-0673-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
磁源体参数反演的快速局部波数法
马国庆1,明彦伯1,韩江涛1,李丽丽1,孟庆发1
1.  吉林大学地球探测科学与技术学院,长春 130021
Fast local wavenumber (FLW) method for the inversion of magnetic source parameters
Ma Guo-Qing1, Ming Yan-Bo1, Han Jiang-Tao1, Li Li-Li1, and Meng Qing-Fa1
1. College of Geoexploration Science and Technology, Jilin University, Changchun 130021, China.
 全文: PDF (669 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 现有磁异常解释的局部波数法在计算地质体位置时大多是通过复杂的方程求解来完成,且需已知地质体构造指数信息,构造指数是描述地质体类型的参数,在实际数据解释中是难以确定的,因此现有方法计算结果的精度较低。本文提出磁异常解释的快速局部波数法,定义水平与垂直局部波数的平方和为和局部波数,利用和局部波数与其它局部波数的线性组合直接、快速地实现地质体位置参数和属性参数(构造指数)的计算,无需任何先验信息及方程求解运算。通过理论模型试验证明快速局部波数法能准确地完成磁异常的解释,且受背景异常和倾斜磁化干扰较小。将快速局部波数法应用于实际磁数据的解释,获得了地质体的位置和构造指数。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词磁异常   和局部波数   位置   构造指数   快速     
Abstract: The current local wavenumber methods for the interpretation of magnetic anomalies compute the locations of geological bodies by solving complex matrices. Presently, such methods require to know the structural index, which is a parameter that represents the source type. The structural index is hard to know in real data; consequently, the precision of current methods is low. We present the fast local wavenumber (FLW) method, and define the squared sum of the horizontal and vertical local wavenumbers as the cumulative local wavenumber. The FLW method is the linear combination of the umulative local wavenumberand other wavenumbers, and is used to compute the locations and structural index of the source without a priori information and matrix solution. We apply the FLW method to synthetic magnetic anomalies, and the results suggest that the FLW method is insensitive to background and oblique magnetization. Next, we apply the FLW method to real magnetic data to obtain the location and structural index of the source.
Key wordsLocal wavenumber   magnetic anomaly   structural index   
收稿日期: 2017-11-07;
基金资助:

本研究由国家重点研发计划课题(编号:2017YFC0601305、2017YFC0602203和2017YFC0601606)、国家油气重大专项子任务(编号:2016ZX05027-002-003)、国家自然科学基金项目(编号:41604098)和国家自然科学基金重点项目(编号:41430322)联合资助。

引用本文:   
. 磁源体参数反演的快速局部波数法[J]. 应用地球物理, 2018, 15(2): 353-360.
. Fast local wavenumber (FLW) method for the inversion of magnetic source parameters[J]. APPLIED GEOPHYSICS, 2018, 15(2): 353-360.
 
[1] Abbas, M. A., Fedi, M., and Florio, G., 2014, Improving the local wavenumber method by automatic DEXP transformation: Journal of Applied Geophysics, 111, 250-255.
[2] Blakely, R. J., 1995, Potential theory in gravity and magnetic application: Cambridge University Press, Britain.
[3] Bracewell, R. N., 1965, The Fourier transform and its application: McGraw Hill Book Co., American.
[4] Cooper, G. R. J., 2016, The amplitude and phase of the derivatives of the magnetic anomalies of thin dykes and contacts: Exploration Geophysics, 47, 290-295.
[5] Fedi, M., Florio, G., and Cascone L., 2012, Multiscale analysis of potential fields by a ridge consistency criterion: the reconstruction of the Bishop basement: Geophysical Journal International, 188, 103-114.
[6] Keating, P., 2009, Improved use of the local wavenumber in potential-field interpretation: Geophysics, 74(6), L75-L85.
[7] Li, L. L., Du, X. J., Meng, L. S., et al., 2012, Improved Local Wavenumber Methods in the Interpretation of Magnetic Fields, Journal of Jilin University(Earth Science Edition) (In Chinese), 42(4), 1179-1185.
[8] Li, X., 2006, Understanding 3D analytic signal amplitude: Geophysics, 71(1), L13-L16.
[9] Ma, G. Q., Huang, D. N., Li, L. L., et al., 2014, A normalized local wavenumber method for interpretation of gravity and magnetic anomalies: Chinese J. Geophys. (In Chinese), 57(4), 1300-1309.
[10] Ma, G. Q., Liu, C., Xu, J., et al., 2017, Correlation imaging method based on local wavenumber for interpreting magnetic data: Journal of Applied Geophysics, 138, 17-22.
[11] Ma, G. Q., 2013, Improved local wavenumber methods in the interpretation of potential field data: Pure and Applied Geophysics, 170(4), 633-643.
[12] Nabighian, M.N., Grauch, V. J. S., Hansen, R. O., et al., 2005, The historical development of the magnetic method in exploration: Geophysics, 70(6), 33-61.
[13] Pilkington, M., and Keating, P., 2006, The relationship between local wavenumber and analytic signal in magnetic interpretation: Geophysics, 71(1), L1-L3.
[14] Reid, A. B., Allsop, J. M., Granser, H., et al., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55, 80-91.
[15] Salem, A., 2005, Interpretation of magnetic data using analytic signal derivatives: Geophysical Prospecting, 53, 75-82.
[16] Salem, A., Elsirafi, A., and Ushijima, K., 1999, Design and application of high-resolution aeromagnetic survey over Gebel Duwi area and its offshore extension, Egypt: Memoirs of the Faculty of Engineering, Kyushu University, 59(3), 201-213.
[17] Salem, A., and Smith, R. S., 2005, Depth and structural index from the normalized local wavenumber of 2Dmagnetic anomalies: Geophysical Prospecting, 51, 83-89.
[18] Salem, A., Ravat, D., Smith, R., et al., 2005, Interpretation of magnetic data using an enhanced local wavenumber (ELW) method: Geophysics, 70(2), L7-L12.
[19] Salem, A., Williams, S., Fairhead, D., et al., 2008, Interpretation of magnetic data using tilt-angle derivatives: Geophysics, 73, L1-L10.
[20] Smith, R. S., Thurston, J. B., Dai, T., et al., 1998, iSPI—The improved source parameter imaging method: Geophysical Prospecting, 46, 141-151.
[21] Stavrev, P., and Reid, A. B., 2007, Degrees of homogeneity of potential fields and structural indices of Euler deconvolution: Geophysics, 72(1), L1-L12.
[22] Thompson, D, T., 1982, 'EULDPH'-a new technique for making computer-assisted Depth Estimates from Magnetic Data: Geophysics, 47, 31-37.
[23] Thurston, J. B., and Smith, R. S., 1997, Automatic conversion of magnetic data to depth dip and susceptibility contrast using the SPI method: Geophysics, 62, 807-813.
[1] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[2] 孙辉,孙建国,孙章庆,韩复兴,刘明忱,刘志强,高正辉,石秀林. 基于快速推进与波前构建的联合3D走时计算[J]. 应用地球物理, 2017, 14(1): 56-63.
[3] 朱小三,卢民杰. 基于航磁资料揭示智利北部区域成矿构造[J]. 应用地球物理, 2016, 13(4): 721-735.
[4] 熊盛青,佟晶,丁燕云,李占奎. 中国陆域航磁与地质构造研究综述[J]. 应用地球物理, 2016, 13(2): 227-237.
[5] 冯彦, 蒋勇, 姜乙, 李正, 蒋瑾, 刘中微, 叶美晨, 王弘晟, 李秀明. 基于三维Taylor多项式和曲面Spline模型的区域磁异常场研究[J]. 应用地球物理, 2016, 13(1): 59-68.
[6] 郭灿灿, 熊盛青, 薛典军, 王林飞. 基于垂向一阶导数与解析信号比值的欧拉反演方法[J]. 应用地球物理, 2014, 11(3): 331-339.
[7] 李丽丽, 韩立国, 黄大年. 空间归一化边界识别方法用于判断地质体的水平位置及深度[J]. 应用地球物理, 2014, 11(2): 149-157.
[8] 陈国新, 陈生昌, 王汉闯, 张博. 基于L0范数最小化的地球物理数据稀疏重构[J]. 应用地球物理, 2013, 10(2): 181-190.
[9] 马国庆, 杜晓娟, 李丽丽, 孟令顺. 利用解析信号的水平与垂直导数进行磁异常的解释[J]. 应用地球物理, 2012, 9(4): 468-474.
[10] 李淑玲, 李耀国, 孟小红. 南海东北部陆缘三维磁性结构研究[J]. 应用地球物理, 2012, 9(3): 237-246.
[11] 王万银, 张功成, 梁建设. 位场垂向导数零值位置空间变化规律研究[J]. 应用地球物理, 2010, 7(3): 197-209.
[12] 林昌洪, 谭捍东, 佟拓. 大地电磁三维快速松弛反演并行算法研究[J]. 应用地球物理, 2009, 6(1): 77-83.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司