APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 342-352    DOI: 10.1007/s11770-018-0676-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于小波变换的重力压缩正演和多尺度反演研究
孙思源,殷长春,高秀鹤,刘云鹤,任秀艳
吉林大学地球探测科学与技术学院,长春 130026
Gravity compression forward modeling and multiscale inversion based on wavelet transform
Sun Si-Yuan1, Yin Chang-Chun1, Gao Xiu-He1, Liu Yun-He1, and Ren Xiu-Yan1
1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China.
 全文: PDF (1224 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 解决多解性和计算效率等问题是重力反演中的主要难点。针对计算效率问题,本文基于小波压缩理论,提出一种改进的重力矩阵压缩正演方法。该方法通过引入一种新的灵敏度矩阵排序规则,降低灵敏度峰值和波动、减少高频信息,在保证精度的同时改善小波变换后灵敏度矩阵的稀疏性、提高压缩比,从而降低内存需求,提高正演速度。正演模拟分析结果表明,本文提出的正演矩阵压缩方法在保证正演精度的前提下压缩比可达300以上。其次,本文将基于小波变换的多尺度反演应用到三维重力反演中,通过将重力反演问题分解成不同尺度的子问题,充分利用不同尺度的数据信息来改善重力反演的多解性和稳定性问题。最后,我们分别对理论数据和实测数据进行常规聚焦反演和多尺度反演以证明多尺度反演在重力反演中的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词小波变换   矩阵压缩   多尺度反演   重力正演     
Abstract: The main problems in three-dimensional gravity inversion are the non-uniqueness of the solutions and the high computational cost of large data sets. To minimize the high computational cost, we propose a new sorting method to reduce fluctuations and the high frequency of the sensitivity matrix prior to applying the wavelet transform. Consequently, the sparsity and compression ratio of the sensitivity matrix are improved as well as the accuracy of the forward modeling. Furthermore, memory storage requirements are reduced and the forward modeling is accelerated compared with uncompressed forward modeling. The forward modeling results suggest that the compression ratio of the sensitivity matrix can be more than 300. Furthermore, multiscale inversion based on the wavelet transform is applied to gravity inversion. By decomposing the gravity inversion into subproblems of different scales, the non-uniqueness and stability of the gravity inversion are improved as multiscale data are considered. Finally, we applied conventional focusing inversion and multiscale inversion on simulated and measured data to demonstrate the effectiveness of the proposed gravity inversion method.
Key words:   
收稿日期: 2018-04-13;
基金资助:

本研究由国家重点研发计划(编号:2017YFC0601900和2016YFC0303100)和国家自然科学基金项目(编号:41530320 和 41774125)。

引用本文:   
. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
 
[1] Abedi, M., Siahkoohi, H. R., Gholami, A., et al., 2015, 3D inversion of magnetic data through wavelet based regularization method: Int. Journal of Mining & Geo-Engineering, 49(1), 1-18.
[2] Ascher, U. M., and Haber, E., 2001, Grid refinement and scaling for distributed parameter estimation problems: Inverse Problems, 17(3), 571-590.
[3] Bunks, C., Saleck, F. M., Zaleski, S., et al., 1995, Multiscale seismic waveform inversion: Geophysics, 60(5), 1457-1473.
[4] Chiao, L. Y., and Kuo, B. Y., 2001, Multiscale seismic tomography: Geophysical Journal International, 145, 517-527.
[5] Chiao, L. Y., and Liang, W. T., 2003, Multiresolution parameterization for geophysical inverse problems: Geophysics, 68, 199-209.
[6] Coker, M. O., Bhattacharya, J. P., and Marfurt, K. J., 2007, Fracture patterns within mudstones on the flanks of a salt dome: Syneresis or slumping?: Gulf Coast Association of Geological Societies, 57, 125-137.
[7] Daubechies, I., 1992, Ten Lectures on Wavelets: Society for Industrial and Applied Mathematics, Philadelphia, USA.
[8] Davis, K., and Li, Y., 2011, Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression: Geophysical Journal International, 185(1), 157-166.
[9] Davis, K., and Li, Y., 2013, Efficient 3D inversion of magnetic data via octree-mesh discretization, space-filling curves, and wavelets: Geophysics, 78(5), J61-J73.
[10] Ennen, C., 2012, Mapping gas-charged fault blocks around the Vinton Salt Dome, Louisiana using gravity gradiometry data: Master thesis, University of Houston, Houston.
[11] Farquharson, C. G., and Mosher, C. R. W., 2009, Three-dimensional modelling of gravity data using finite differences: Journal of Applied Geophysics, 68(3), 417-422.
[12] Fedi, M., and Quarta, T., 1998, Wavelet analysis for the regional-residual and local separation of potential field anomalies: Geophysical Prospecting, 46(5), 507-525.
[13] Foks, N. L., Krahenbuhl, R., and Li, Y., 2014, Adaptive sampling of potential-field data: A direct approach to compressive inversion: Geophysics, 79(1), IM1-IM9.
[14] Gallardo, L. A., and Meju, M. A., 2004, Joint two-dimensional DC resistivity and seismic travel time inversion with cross gradients constraints: Journal of Geophysical Research, Solid Earth, 109(B3).
[15] Holland, J. H., 1992, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence: MIT press, Cambridge.
[16] Hung, S. H., Chen, W. P., and Chiao, L. Y., 2011, A data-adaptive, multiscale approach of finite-frequency, traveltime tomography with special reference to P and S wave data from central Tibet: Journal of Geophysical Research: Solid Earth, 116(B6).
[17] Jahandari, H., and Farquharson, C. G., 2013, Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids: Geophysics, 78(3), G69-G80.
[18] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., 1983, Optimization by simulated annealing: Science, 220, 671-80.
[19] Last, B. J., and Kubik, K., 1983, Compact gravity inversion: Geophysics, 48, 713-721.
[20] Leblanc, G. E., and Morris, W. A., 2001, Denoising of aeromagnetic data via the wavelet transform: Geophysics, 66(6), 1793-1804.
[21] Li, Y., and Oldenburg, D. W., 2003, Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method: Geophysical Journal International, 152(2), 251-265.
[22] Martin, R., Monteiller, V., Komatitsch, D., et al., 2013, Gravity inversion using wavelet-based compression on parallel hybrid CPU / GPU systems: Application to southwest Ghana: Geophysical Journal International, 195, 1594-1619.
[23] Moorkamp, M., Jegen, M., Roberts, A., et al., 2010, Massively parallel forward modeling of scalar and tensor gravimetry data: Computers & Geosciences, 36(5), 680-686.
[24] Portniaguine, O., and Zhdanov, M. S., 1999, Focusing geophysical inversion images: Geophysics, 64(3), 874-887.
[25] Ren, Z., Chen, C., Pan, K., et al., 2017a, Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts: Surveys in Geophysics, 38(2), 479-502.
[26] Ren, Z., Tang, J., Kalscheuer, T., et al., 2017b, Fast 3D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multi-level fast multiple method: Journal of Geophysical Research: Solid Earth, 122(1), 79-109.
[27] Rezaie, M., Moradzadeh, A., Kalate, A. N., et al., 2017, Fast 3D focusing inversion of gravity data using reweighted regularized Lanczos bidiagonalization method: Pure and Applied Geophysics, 174(1), 359-374.
[28] Ridsdill-Smith, T. A., and Dentith, M. C., 1999, The wavelet transform in aeromagnetic processing: Geophysics, 64(4), 1003-1013.
[29] Tikhonov, A. N., and Arsenin, V. Y., 1977, Solutions of ill-posed problems: Washington, V. H. Winston and Sons.
[30] Vatankhah, S., Renaut, R. A., and Ardestani, V. E., 2018, Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition: Geophysical Journal International, 213(1), 695-705.
[31] Xu, Y. X., and Wang, J. Y., 1998, A multiresolution inversion of one-dimensional magnetotelluric data: Chinese Journal of Geophysics, 41(5), 704-711.
[32] Yin, C., and Hodges, G., 2007, Simulated annealing for airborne em inversion: Geophysics, 72(4), F189-F195.
[33] Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems: Vol. 36, Elsevier.
[34] Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69, 925-937.
[1] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[2] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[3] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[4] 宋丽蓉, 于常青, 李桂花, 冯杨洋, 何俊杰. 西藏雄巴地区重力异常特征分析及火山沉积型硼矿成矿预测[J]. 应用地球物理, 2015, 12(4): 516-522.
[5] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[6] 龙云, 韩立国, 韩利, 谭尘青. 小波域L1范数最优解匹配处理[J]. 应用地球物理, 2012, 9(4): 451-458.
[7] 张晓峰, 潘保芝, 王飞, 韩雪. 小波变换在裂缝识别和裂缝密度评价中的研究[J]. 应用地球物理, 2011, 8(2): 164-169.
[8] 王珺, 陈雨红, 许大华, 乔玉雷. 基于可靠地估计反射方位和边界的构造约束保边滤波[J]. 应用地球物理, 2009, 6(4): 337-346.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司