APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 332-341    DOI: 10.1007/s11770-018-0689-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究
徐凯军,孙洁
中国石油大学(华东)地球科学与技术学院山东青岛 266580
Induced polarization in a 2.5D marine controlled-source electromagnetic field based on the adaptive finite-element method
Xu Kai-Jun1 and Sun Jie1
This work was supported by the National Natural Science Foundation of China (No. 41304094) and the National High Technology Research and Development Program of China (863 Program) (No. 2012AA09A20107).
 全文: PDF (894 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 油气藏自身会产生激电效应,明确海洋可控源电磁场激电效应特征非常重要。本文基于自适应有限元方法实现了带激电效应的2.5D海洋可控源频率域电磁场正演。采用非结构化三角网格单元剖分地电模型,可以模拟任意起伏地形和复杂地电构造。利用Cole-Cole模型表述油气藏的激电效应,实现了考虑激电效应的海洋电磁复电阻率正演算法。将本文的计算结果与已发表的一维模型结果对比,检验了本文算法的正确性。最后,设计了不同的极化模型,针对不同的场源方位角、激电参数和地形,计算了的电磁场响应结果,分析了激电效应对海洋可控源电磁场的影响规律,结果表明油气藏的激电效应和海底地形对海洋可控源电磁场有一定的影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词海洋可控源电磁   自适应有限元   激电效应   Cole-Cole模型     
Abstract: The induced polarization (IP) in rocks and minerals is of significance to the marine controlled-source electromagnetic (CSEM) field. We propose an adaptive finite-element algorithm for the 2.5D frequency-domain forward modeling of marine CSEM that considers the induced polarization. The geoelectrical model is discretized using an unstructured triangular elemental grid that accommodates the complex topography and geoelectrical structures. We use the Cole–Cole model to describe the IP and develop a complex resistivity forward modeling algorithm. We compare the simulation results with published 1D model results and subsequently calculate the electromagnetic field for variable azimuth sources, IP parameters, and topography. Finally, we analyze the IP effect on the marine CSEM field and show that IP of oil reservoirs and topography affects the marine CSEM electromagnetic field.
Key wordsControlled source   electromagnetic field   finite element   induced polarization effect   Cole–Cole model   
收稿日期: 2017-04-02;
基金资助:

本研究由国家自然科学基金项目(编号:41304094)和国家高新技术研究发展项目(863项目)(编号:2012AA09A20107)资助。

引用本文:   
. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
. Induced polarization in a 2.5D marine controlled-source electromagnetic field based on the adaptive finite-element method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 332-341.
 
[1] Cai, H. Z., Xiong, B., and Michael, Z. M., 2015, Three-dimensional marine controlled-source electromagnetic modelling in anisotropic medium using finite element method: Chinese Journal of Geophysics (in Chinses), 58(8), 2839−2850.
[2] Constable, S., Key, K., and Lewis, L., 2009, Mapping offshore sedimentary structure using electromagnetic methods and terrain effects in marine magnetotelluric data: Geophysical Journal International, 176(2), 431−442.
[3] Franke, A., Borner, R. U., and Spitzer, K., 2007, Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography: Geophysical Journal International, 171(1), 71−86.
[4] Guo, N. N., Chang Y. J., and Jia, H. T., 2011, Influences of induced polarization on marine controlled-source electromagnetic survey: 10th China international Geo-Electromagnetic Workshop, Extended Abstracts (in Chinses), 392−395.
[5] Hesthammer, J., and Stefatos, A., 2010, The performance of CSEM as a de-risking tool in oil and gas exploration: 80th Ann. Internat. Mtg. SEG Technical Program, Expanded Abstracts, 675−679.
[6] Key, K., and Ovall, J., 2011, A parallel goal-oriented adaptive finite element method for 2.5D electromagnetic modelling: Geophysical Journal International, 186(1), 137−154.
[7] Key, K., and Weiss, C., 2006, Adaptive finite element modeling using unstructured grids: the 2D magnetotelluric example: Geophysics, 71(6), G291−G299.
[8] Liu, Y., 2014, 2D finite element modeling and inversion for marine controlled-source electromagnetic fields: PhD Thesis, Ocean University of China, Qingdao.
[9] Li, Y., and Constable, S., 2007, 2D marine controlled-source electromagnetic modeling, part 2: the effect of bathymetry: Geophysics, 72(2), WA63−WA71.
[10] Li, Y., and Key, K., 2007, 2D marine controlled-source electromagnetic modeling, Part 1: An adaptive finite element algorithm: Geophysics, 72(2), WA51−WA62.
[11] Li, Y., and Pek, J., 2008, Adaptive finite element modelling of two-dimensional magnetotelluric fields in general anisotropic media: Geophysical Journal International, 175(3), 942−954.
[12] Luo, W. B., and Li, Q. C., 2009, Effect of induced polarization on marine controlled-source electromagnetic in frequency domain: Beijing International Geophysical Conference and Exposition, Expanded Abstracts, 24−27.
[13] Pelton, W., Ward, S., and Hallof, P., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP: Geophysics, 43(3), 588−609.
[14] Slater, L. D., and Glaser, D. R., 2003, Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization: Geophysics, 68(5), 1547−1558.
[15] Sternberg, B. K., 1991, A review of some experience with the induced polarization/ resistivity method for hydrocarbon surveys: Successes and limitations: Geophysics, 56(10), 1522−1532.
[16] Ulrich, C., and Slater, L. D., 2004, Spectral induced polarization measurements on unsaturated, unconsolidated sands: Geophysics, 69(3), 762−771.
[17] Veeken, P., Legeydo, P., Davidenko, Y., and Chuvaev, A., 2009, Benefits of the induced polarization geoelectric method to hydrocarbon exploration: Geophysics, 74(2), B47−B59.
[18] Xu, K. J., Shi S. H., and Zhou, J. H., 2009, Study on induced polarization effect of three dimensional magnetotelluric: Northwestern Seismological journal, 31(1), 31−34.
[19] Yang, J., Liu, Y., and Wu, X. P., 2015, 3D simulation of marine CSEM using vector finite element method on unstructured grids: Chinese Journal of Geophysics (in Chinses), 58(8), 2827−2838.
[20] Ye, Y. X., Li, Y. G., Deng, J. Z., and Li, Z. L., 2014, 2.5D induced polarization forward modeling using the adaptive finite-element method: Applied Geophysics, 11(4), 500−507.
[21] Ye, Y. X., Li, Y. G., Liu, Y., Li, G., and Yang, H. Y., 2016, 3D finite element modeling of marine controlled-source electromagnetic fields using locally refined unstructured meshes: Chinese Journal of Geophysics (in Chinses), 59(12), 4747−4758.
[22] Zhang, B., Yin, C. C., Liu, Y. H., Ren, X. Y., Qi, Y. F., and Cai, J., 2018, 3D forward modeling of a dual-ship-towed marine CSEM and response analysis: Applied Geophysics, 15(1), 11−25.
[23] Zhang, S. Z., Li, Y. X., Zhou, J. P., Nie, X. W., Zhou, A. C., and Yang, G. D., 1986, Induced polarization method in oil exploration-The cause of IP anomaly and it’s relation to the oil reservoir: Chinese Journal of Geophysics (in Chinses), 29(6), 597−614.
[1] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[2] 王书明,底青云,王若,王雪梅,苏晓璐,王鹏飞. MCSEM利用异常场主部分解消除海水层影响[J]. 应用地球物理, 2018, 15(1): 3-10.
[3] 张志勇, 谭捍东, 王堃鹏, 林昌洪, 张斌, 谢茂笔. 复电阻率法二维数据空间反演并行算法研究[J]. 应用地球物理, 2016, 13(1): 13-24.
[4] 陈凯, 魏文博, 邓明, 伍忠良, 余刚. 用于海底MT及海洋CSEM的海底电磁采集站[J]. 应用地球物理, 2015, 12(3): 317-326.
[5] 张建国, 武欣, 齐有政, 黄玲, 方广有. 三维海洋电磁合成源干涉法抗空气波干扰研究[J]. 应用地球物理, 2013, 10(4): 373-383.
[6] 余传涛, 刘鸿福, 张新军, 杨德义, 李自红. 从瞬变电磁响应中提取IP信息的研究[J]. 应用地球物理, 2013, 10(1): 79-87.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司