APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 318-331    DOI: 10.1007/s11770-018-0684-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
时间域航空电磁数据变维数贝叶斯反演
高宗慧1,殷长春1,齐彦福2,张博1,任秀艳1,卢永超1
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 长安大学地质工程与测绘学院,西安 710054
Transdimensional Bayesian inversion of time-domain airborne EM data
Gao Zong-Hui1, Yin Chang-Chun1, Qi Yan-Fu2, Zhang Bo1, Ren Xiu-Yan1, and Lu Yong-Chao1
1. College of Geo-Exploration Sciences and Technology, Jilin University, Changchun 130026, China.
2. School of Geology and Survey Enginneering, Changan University, Xi’an 710054, China.
 全文: PDF (1168 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为改善反演效果,获得全局最小解,减小反演结果对初始模型的依赖程度,本文将变维数贝叶斯反演应用于时间域航空电磁数据反演。变维数贝叶斯反演方法在贝叶斯方法基础上利用可逆跳跃马尔科夫链蒙特卡洛方法(RJMCMC)实现反演模型层数的变化。这种方法根据建议分布并利用蒙特卡洛方法充分搜索模型空间进行随机采样。只统计同时满足数据拟合要求和接受概率的候选模型,受初始模型影响小,收敛稳定,反演结果可靠,最终可获得反演模型的概率分布和不确定度信息。由于实际飞行中发射源高度很难精确测量,因此本文在反演过程中将发射源高度分为不变和发射源高度变化两种情况。同时本文在电阻率先验概率密度函数中引入加权系数以调整对反演模型的约束强度,可有效地解决电阻率断面中间层反演效果不理想的问题。本文通过反演中心回线装置的H型和分离装置K型、HK型断面添加高斯噪声后的仿真数据以及实测数据,验证了变维数贝叶斯方法反演时间域航空电磁数据的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词时间域航空电磁   贝叶斯反演   变维数   加权系数   反褶积     
Abstract: To reduce the dependence of EM inversion on the choice of initial model and to obtain the global minimum, we apply transdimensional Bayesian inversion to time-domain airborne electromagnetic data. The transdimensional Bayesian inversion uses the Monte Carlo method to search the model space and yields models that simultaneously satisfy the acceptance probability and data fitting requirements. Finally, we obtain the probability distribution and uncertainty of the model parameters as well as the maximum probability. Because it is difficult to know the height of the transmitting source during flight, we consider a fixed and a variable flight height. Furthermore, we introduce weights into the prior probability density function of the resistivity and adjust the constraint strength in the inversion model by changing the weighing coefficients. This effectively solves the problem of unsatisfactory inversion results in the middle high-resistivity layer. We validate the proposed method by inverting synthetic data with 3% Gaussian noise and field survey data.
Key wordsTime-domain airborne EM   Bayesian inversion   weighing   deconvolution   
收稿日期: 2017-11-07;
基金资助:

本研究由国家重点研发计划重点专项(编号:2017YFC0601900和2016YFC0303100)、国家自然科学基金重点项目(编号:41530320)和面上项目(编号:41774125)资助。

引用本文:   
. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
. Transdimensional Bayesian inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2018, 15(2): 318-331.
 
[1] Agostinetti, N. P., and Malinverno, A., 2010, Receiver function inversion by trans-dimensional Monte Carlo sampling: Geophysical Journal International, 181(2), 858−872.
[2] Bodin, T., and Sambridge, M., 2009, Seismic tomography with the reversible jump algorithm: Geophysical Journal International, 178(3), 1411−1436.
[3] Brodie, R. C., and Sambridge, M., 2012, Transdimensional Monte Carlo Inversion of AEM Data: 22th International Geophysical Conference and Exhibition, Brisbane, Australia, 2629.
[4] Carrigy, M. A., and Kramers, J. W., 1973, Guide to the Athabasca oil sands area, Alberta Research Council Press, Edmonton.
[5] Chen, T. Y., Hodges, G., and Miles, P., 2015, MULTIPULSE-High resolution and high power in one TDEM system: Exploration Geophysics, 46, 49−57.
[6] Chunduru, R. K., Sen, M. K., and Stoffa, P. L., 1996, 2-D resistivity inversion using spline parameterization and simulated annealing: Geophysics, 62(1), 151−161.
[7] Green, P. J., 1995, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination: Biometrika, 82(4), 711−732.
[8] Guo, R. W., Dosso, S. E., Liu, J. X., et al., 2011, Non-linearity in Bayesian 1-D magnetotelluric inversion: Geophysical Journal International, 185(2), 663−675.
[9] Hawkins, R., Brodie, R. C., and Sambridge, M., 2017, Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles: Exploration Geophysics, 49(3), 332−343.
[10] Liu, W. J., Liu, J. X., Guo, R. W., et al., 2011, Correlated data errors on 1-D magnetotelluric (MT) Bayesian inversion: 27th Chinese Geophysical Society, 242.
[11] Liu, Y. H., and Yin, C. C., 2016, 3D inversion for multipulse airborne transient electromagnetic data: Geophysics, 81(6), E401−E408.
[12] Malinverno, A., 2002, A Bayesian criterion for simplicity in inverse problem parametrization: Geophysical Journal International, 140(2), 267−285.
[13] Malinverno, A., 2002, Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem: Geophysical Journal International, 151(3), 675−688.
[14] Minsley, B. J., 2011, A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using frequency-domain electromagnetic data: Geophysical Journal International, 187(1), 252−272.
[15] Mitsuhata, Y., Uchida, T., and Amano, H., 2002, 2.5-D inversion of frequency-domain electromagnetic data generated by a grounded-wire source: Geophysics, 67(6), 1753−1768.
[16] Nabighian, N. M., 1988, Electromagnetic Methods in Applied Geophysics-Theory: Society of Exploration Geophysicists Press.
[17] Ray, A., and Key, K., 2012, Bayesian inversion of marine CSEM data with a trans-dimensional self parametrizing algorithm: Geophysical Journal International, 191(3), 1135−1151.
[18] Ray, A., Key, K., Bodin, T., et al., 2014, Bayesian inversion of Marine CSEM data from the Scarborough gas field using a trans-dimensional 2-D parametrization: Geophysical Journal International, 199(3), 1847−1860.
[19] Shi, X. D., Liu, J. X., Guo, R. W., et al., 2012, Unbiased 1D magnetotelluric Bayesian inversion: Computing Techniques for Geophysical and Geochemical Exploration, 34(4), 371−379.
[20] Shi, X. M., Wang, J. Y., Zhang. S. Y., et al., 2000, Multiscale genetic algorithm and its application in magnetotelluric sounding data inversion: Chinese Journal Geophysics (in Chinese), 43(1), 122−130.
[21] Steuer, A., Siemon, B., and Auken, E., 2009, A comparison of helicopter-borne electromagnetics in frequency-and time-domain at the Cuxhaven valley in Northern Germany: Journal of Applied Geophysics, 67(3), 194−205.
[22] Stolz, E. M., and Macnae, J., 1998, Evaluating EM waveforms by singular value decomposition of exponential basis functions: Geophysics, 63(1), 64−74.
[23] Traninorguitton, W., and Hoversten, G. M., 2011, Stochastic inversion for electromagnetic geophysics: Practical challenges and improving convergence efficiency: Geophysics, 76(6), F373−F386.
[24] Wang, H., Jiang, H., Wang, L., et al., 2015, Magnetotelluric inversion using artificial neural network: Journal of Central South University (Science and Technology), 46(5), 1707−1714.
[25] Wang, Y. R., Wang, L. Q., Yin, D. W., et al., 2014, Airborne electromagnetic data de-convolution based on singular value decomposition of the tau domain: Measurement and Control Technology, 33(1), 47−50.
[26] Yin, C. C., and Hodges, G., 2007, Simulated annealing for airborne EM inversion: Geophysics, 72(4), F189−F196.
[27] Yin, C. C., Huang, Q., and Ben, F., 2013, The full-time electromagnetic modeling for time-domain airborne electromagnetic systems: Chinese Journal Geophysics (in Chinese), 56(09), 3153−3162.
[28] Yin, C. C., Qin, Y. F., Liu, Y. H., and Cai, J., 2014, Trans-dimensional Bayesian inversion of frequency-domain airborne EM data: Chinese Journal Geophysics (in Chinese), 57(09), 2971−2980.
[29] Yin, C. C., Qiu, C. K., Liu, Y. H., et al., 2016, Weighted laterally-constrained inversion of time-domain airborne electromagnetic data: Journal of Jilin university (Earth Science Edition), 46(1), 254−261.
[30] Zhu, K. G., Ma, M. Y., Che, H. W., et al., 2012, PC-based artificial neural network inversion for airborne time-domain electromagnetic data: Applied Geophysics, 9(1), 1−8.
[1] 王德营,孔雪,董烈乾,陈立华,王永军,王晓晨. 一种非白噪反射系数序列的预测反褶积方法*[J]. 应用地球物理, 2019, 16(1): 109-123.
[2] 李皓,李国发,郭祥辉,孙夕平 ,王建富. 基于非稳态反演的气枪阵列子波方向性反褶积?[J]. 应用地球物理, 2019, 16(1): 124-132.
[3] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[4] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[5] 方圆, 张丰麒, 王彦春. 基于双约束项的广义线性多波联合反演[J]. 应用地球物理, 2016, 13(1): 103-115.
[6] 孙学凯, 孙赞东, 谢会文. 非稳态地震稀疏约束反褶积研究[J]. 应用地球物理, 2014, 11(4): 459-467.
[7] 郭灿灿, 熊盛青, 薛典军, 王林飞. 基于垂向一阶导数与解析信号比值的欧拉反演方法[J]. 应用地球物理, 2014, 11(3): 331-339.
[8] 张建国, 武欣, 齐有政, 黄玲, 方广有. 三维海洋电磁合成源干涉法抗空气波干扰研究[J]. 应用地球物理, 2013, 10(4): 373-383.
[9] 李芳, 王守东, 陈小宏, 刘国昌, 郑强. 径向道域变步长采样叠前非稳态反褶积处理方法研究[J]. 应用地球物理, 2013, 10(4): 423-432.
[10] 李国发, 秦德海, 彭更新, 岳英, 翟桐立. 稀疏约束反褶积方法实验分析与应用研究[J]. 应用地球物理, 2013, 10(2): 191-200.
[11] 朱凯光, 马铭遥, 车宏伟, 杨二伟, 嵇艳鞠, 于生宝, 林君. 基于主成分的时间域航空电磁数据神经网络反演仿真研究[J]. 应用地球物理, 2012, 9(1): 1-8.
[12] 刘志鹏, 陈小宏, 李景叶. 基于ARMA模型非因果空间预测滤波[J]. 应用地球物理, 2009, 6(2): 122-128.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司