APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 311-317    DOI: 10.1007/s11770-018-0686-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性
段茜1,2,刘向君1
1. 西南石油大学地球科学与技术学院,成都 610500
2. 西南石油大学理学院,成都 610500
Two-phase pore-fluid distribution in fractured media: acoustic wave velocity vs saturation
Duan Xi1,2 and Liu Xiang-Jun1
1. Department of Geosciences, Southwest Petroleum University, Chengdu 610500, China.
2. Department of Science, Southwest Petroleum University, Chengdu 610500, China.
 全文: PDF (702 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 关于声波速度与流体饱和度的关系已开展了大量实验工作,声波速度随饱和度的变化规律与孔隙流体在孔隙尺度范围分布的不均匀性有关,从理论上采用等效流体模型来定量表征通常存在着较大偏差。从弹性波动理论出发,以纵波震源作为激发震源项,采用时间域二阶和空间域八阶的交错网格有限差分方法对气水两相裂缝型介质的声波波场进行了数值模拟。通过计算不同孔隙流体分布模式下和不同饱和度情况下岩样的声波速度,分析了岩样在不同孔隙流体分布模式下声波速度随饱和度的变化规律,并对物理实验得出的声波速度随饱和度变化的规律从孔隙流体微观分布角度给出了合理解释。数值计算方法简单且精度高,对地震数据解释以及烃类开采过程中监测孔隙流体结构和组分变化有一定的指导作用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词声波速度   裂缝   气水两相   饱和度   微观分布     
Abstract: The acoustic wave velocity varies with fluid saturation and pore-fluid distribution. We use a P-wave source and the staggered grid finite-difference method, with second-order accuracy in time and eighth-order accuracy in space, to simulate the acoustic wave field in a fractured medium that is saturated with a two-phase pore fluid (gas & water). Further, we analyze the variation of acoustic wave velocity with saturation for different pore-fluid distribution modes. The numerical simulation method is simple and yields accurate results.
Key wordsAcoustic wave velocity   fractured reservoir   saturation   pore distribution   
收稿日期: 2017-11-22;
基金资助:

本研究由国家自然科学基金重点项目(编号:51134004)资助。

引用本文:   
. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
. Two-phase pore-fluid distribution in fractured media: acoustic wave velocity vs saturation[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
 
[1] Berenger, J. P., 1994, A perfectly matched layer for absorption of electromagnetic waves: Journal of Computational Physics, 114(2), 185−200.
[2] Birch, F., 1961, The velocity of compressional waves in rocks to 10 kb: Journal of Geophysical Research, 66, 2199−2224.
[3] Cadoret, T., Mavko, G., and Zinszner, B., 1998, Fluid distribution effect on sonic attenuation in partially saturated limestones: Geophysics, 63(1), 154−160.
[4] Carcione, J. M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: effects of inhomogeneous rock properties: Geophysics, 71(3), O1−O8.
[5] Chapman, M., Liu, E., and Li, X., 2006, The influence of fluid-sensitive dispersion and attenuation on AVO analysis: Geophysical Journal International, 167(1), 89−105.
[6] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294−307.
[7] Domenico, S. N., 1974, Effects of water saturation on seismic reflectivity of sand reservois encased in shale: Geophysics, 39(6), 759−769.
[8] Dong, L. G., Ma, Z. T., and Cao, J. Z., 2000, A study on stability of the staggered-grid high-order difference method of first-order elastic wave equation: Chinese Journal of Geophysics, 43(6), 856−864.
[9] Levander, A. R., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53(11), 1425−1436.
[10] Liu, X. F., Sun, J. M., and Wang, H. T., 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1−7.
[11] Masson, Y. J., and Pride, S. R., 2007, Poroelastic finite difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity: Journal of Geophysical Research, 112, B03204.
[12] Müller, M. T., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave induced flow in porous rocks: a review: Geophysics, 75(5), 75A147−75A164.
[13] Picotti, S., Carcione, J. M., Rubino, J. G., et al., 2010, A viscoelastic representation of wave attenuation in porous media: Computers & Geosciences, 36(1), 44−53.
[14] Ricker, N., 1953, The form and laws of propagation of seismic wavelets: Geophysics, 18(1), 10−40.
[15] Rubino, J. G., Ravazzoli, C. L., and Santos, J. E., 2009, Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks: Geophysics, 74(1), N1−N13.
[16] Spedding, P. L., and Spence, D. R., 1993, Flow regime in two-phase gas liquid flow: International Journal of Multiphase Flow, 19, 245−280.
[17] Shi, G., Shen, W. L., and Yang, D. Q., 2003, The relationship of wave velocities with saturation and fluid distribution in pore space: Chinese Journal of Geophysics, 46(1), 138−142.
[18] Toms, J., Müller, M. T., Ciz, R., et al., 2006, Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks: Soil Dynamics and Earthquake Engineering, 26(6/7), 548−565.
[19] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method: Geophysics, 51(4), 889−901.
[20] White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40(2), 224−232.
[21] White, J. E., Mihailova, N., and Lyakhovitsky, F. M., 1975, Low-frequency seismic waves in fluid-saturated layered rocks: Journal of the Acoustical Society of America, 57(S1), S30.
[22] Yu, S. P., 1996, Wide-band Ricker wavelet: Oil Geophysical Prospecting (In Chinese), 31(5), 605−615.
[23] Zhao, A., Han, Y. F., Ren, Y. Y., et al., 2016, Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow: Applied Geophysics, 13(1), 179−193.
[24] Zhu, W., and Shan, R., 2016, Transmitted ultrasonic wave simulation and precision analysis of 3D digital cores: Applied Geophysics, 13(2), 375−381.
[1] 王浩,李宁,王才志,武宏亮,刘鹏,李雨生,刘英明,原野. 井旁裂缝对偶极横波反射波幅度影响分析*[J]. 应用地球物理, 2019, 16(1): 1-14.
[2] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[3] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[4] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[5] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[6] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[7] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[8] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[9] 马劲风,李琳,王浩璠,谭明友,崔世凌,张云银,曲志鹏,贾凌云,张树海. CO2地质封存地球物理监测技术[J]. 应用地球物理, 2016, 13(2): 288-306.
[10] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[11] 陈双全, 曾联波, 黄平, 孙绍寒, 张琬璐, 李向阳. 多尺度裂缝综合预测应用研究[J]. 应用地球物理, 2016, 13(1): 80-92.
[12] 曹呈浩,张宏兵,潘益鑫,滕新保. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
[13] 安勇. 叠前地震衰减各向异性的裂缝预测方法及应用[J]. 应用地球物理, 2015, 12(3): 432-440.
[14] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[15] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司