APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 311-317    DOI: 10.1007/s11770-018-0679-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析
郭桂红1,闫建萍2,张智3,José Badal4,程建武5,石双虎6,马亚维1
1. 兰州大学和西部灾害与环境力学教育部重点实验室,兰州 730000
2. 兰州大学和地质科学与矿产学院,兰州 730000
3. 桂林理工大学地球科学学院,桂林 541004
4. Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
5. 中国地震局兰州地震研究所,兰州 730000
6. 东方地球物理公司国际勘探事业部,涿州 072751
Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media
Guo Gui-Hong1, Yan Jian-Ping2, Zhang Zhi3, José Badal4, Cheng Jian-Wu5, Shi Shuang-Hu6, and Ma Ya-Wei1
1. Lanzhou University & The Key Laboratory of Mechanics on Disaster and Environmental in Western China,  Lanzhou 730000, China.
2. Lanzhou University & School of Earth Sciences, Lanzhou 730000, China.
3. School of Earth Science, Guilin university of science and technology, Guilin 541004, China. 
4. Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
5. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China.
6. BGP International, CNPC, Zhuozhou 072751, China.
 全文: PDF (1004 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在含有定向排列裂缝组的多孔岩石地层中,特别是碳酸盐岩储集层,弹性波的传播和衰减,因受诸如裂缝闭合、尺寸、及其填充的流体和走向等因素影响,具有各向异性特征。在本次研究中,我们采用了基于Chapman等效介质模型,利用数值实验方法研究了这类储层中P波传播特性诸如速度、衰减和横波分裂等各向异性随频率和方位的变化规律。模拟结果表明,当一组裂缝闭合与张开时随方位变化的速度、衰减和各向异性是有所不同的。随方位变化衰减最小值或P波速度最大值与张开裂缝的走向趋于一致,闭合裂缝的P波速度大于张开裂缝,而衰减和各向异性则张开裂缝的大于闭合裂缝;不同尺度裂缝,速度的最大值和衰减最大值与裂缝组平均方位对应,小尺度裂缝对波的传播有小的影响,方位依赖的各向异性相比其他裂缝属性有更小的影响;裂缝密度对P波速度、衰减和各向异性有更大的影响,而衰减比速度和各向异性更敏感裂缝尺寸;在地震勘探频段油、气饱和的衰减与盐水饱和不同,充填油和气随方位变化值比较低。两组裂缝有相同的密度,快横波偏振方位线性的决定于一组裂缝的方位。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词裂缝   流体      速度   衰减   各向异性   偏振     
Abstract: Elastic wave propagation and attenuation in porous rock layers with oriented sets of fractures, especially in carbonate reservoirs, are anisotropic owing to fracture sealing, fracture size, fracture density, filling fluid, and fracture strike orientation. To address this problem, we adopt the Chapman effective medium model and carry out numerical experiments to assess the variation in P-wave velocity and attenuation, and the shear-wave splitting anisotropy with the frequency and azimuth of the incident wave. The results suggest that velocity, attenuation, and anisotropy vary as function of azimuth and frequency. The azimuths of the minimum attenuation and maximum P-wave velocity are nearly coincident with the average strike of the two sets of open fractures. P-wave velocity is greater in sealed fractures than open fractures, whereas the attenuation of energy and anisotropy is stronger in open fractures than sealed fractures. For fractures of different sizes, the maximum velocity together with the minimum attenuation correspond to the average orientation of the fracture sets. Small fractures affect the wave propagation less. Azimuth-dependent anisotropy is low and varies more than the other attributes. Fracture density strongly affects the P-wave velocity, attenuation, and shear-wave anisotropy. The attenuation is more sensitive to the variation of fracture size than that of velocity and anisotropy. In the seismic frequency band, the effect of oil and gas saturation on attenuation is very different from that for brine saturation and varies weakly over azimuth. It is demonstrated that for two sets of fractures with the same density, the fast shear-wave polarization angle is almost linearly related with the orientation of one of the fracture sets.
Key wordsFracture   fluid   wave   velocity   attenuation   anisotropy   polarization   
收稿日期: 2017-12-13;
基金资助:

本研究由国家自然科学基金(编号:41674046、41440030和41574078)和兰州大学中央高校基本科研业务费专项资金(编号:lzujbky-2015-175)联合资助。

引用本文:   
. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
 
[1] Agersborg, R., Johansen, T. A., and Jakobsen, M., 2009, Velocity variations in carbonate rocks due to dual porosity and wave-induced fluid flow, Geophys. Prospect., 57(1), 81-98.
[2] Aki, K., and Richards, P. G., 1980, Quantitative seismology: Thoery and Method, W.H. Freeman and Company, volume 1.
[3] Batzle, M., Han, D. H., and Hoffmann, R., 2006, Fluid mobility and frequency-dependent seismic velocity - direct measurements: Geophysics, 71(1), N1-N9.
[4] Borcherdt, R. D., 2009, Viscoelastic waves in layered media: Cambridge University Press.
[5] Cerveny, V., and Psencik, I., 2009, Perturbation Hamiltonians in heterogeneous anisotropic weakly dissipative media: Geophysical Journal International, 178, 939-949.
[6] Chapman, M., 2003, Frequency dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys. Prospect., 51(5), 369-379.
[7] Chapman, M., 2009, Modeling the effect of multiple sets of mesoscale fractures in porous on frequency-dependent anisotropy: Geophysics, 74(6), D97-D103.
[8] Chapman, M., Maultzsch, S., Liu, E., et al., 2003, The effect of fluid saturation in an anisotropic, multi-scale equant porosity model. J. Appl. Geophy., 54, 191-202.
[9] Carcione, J. M., 2015, Wave fields in real media: Theory and numerical simulation of wave propagation in anisotropic, anelastic, porous and electromagnetic media: Handbook of Geophysical exploration (3rd ed.), Elsevier.
[10] Chen, Z. Q., Zeng, L. B., Huang, P., et al., 2016, The application study of the multi-scales integrated prediction method to fractured reservoir description. Applied Geophysics, 13(1), 80-92.
[11] Crampin, S., 1978, Seismic wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophs. J. R. astr. Soc., 53(3), 457-496.
[12] Crampin, S., 1985, Evaluation of anisotropy by shear-wave splitting. Geophysics, 50, 142-152.
[13] Crampin S., 1994, The fracture criticality of crustal rocks. Geophys. J. Int., 118, 428-438.
[14] Crampin, S., and Gao, Y., 2014, Two species of microcrack. Applied Geophysics, 11(1), 1-8.
[15] Fedorov, F. I., 1968. Theory of elastic waves in crystals, Springer.
[16] Guo, G. H., Zhang, Z., Jin, S. X., et al., 2013, Multi-scale fracture and fluid response characteristic in seismic data: Numerical simulation analysis. Chinese J. Geophys., 56(6), 2002-2011 (in Chinese).
[17] Hao, Q., and He, Q., 2013, A standard linear solid model representation of Chapman’s frequency-dependent anisotropy induced by two sets of aligned mesoscale fractures: Journal of Seismic Exploration, 22, 169-182.
[18] Hao, Q., and Alkhalifah T., 2017, An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis: Geophysics, 82, No.1, C9-C20.
[19] Hao, Q., and Alkhalifah T., 2017, An acoustic eikonal equation for attenuating orthorhombic media: Geophysics, 82(4), WA67-WA81.
[20] Hudson, J. A., Liu, E., and Crampin, S., 1996, The mechanical properties of materials with interconnected cracks and pores. Geophys. J. Int., 124, 105-112.
[21] Jakobsen, M., 2004, The interacting inclusion model of wave induced fluid flow. Geophys. J. Int., 158, 1168-1176.
[22] Kraut, E. A., 1963, Advances in the theory of aniosotropic elastic wave propagation. Rev. Geophys., 1, 401-408.
[23] Liu, E., Crampin, S., Queen, J. H., et al., 1993, Behaviour of shear-waves in rocks with two sets of parallel cracks. Geophys. J. Int., 113, 509-517.
[24] Liu, E., Hudson, J. A., Pointer T., 2000, Equivalent medium representation of fractured rock. J. Geophys. Res., 105(B2), 2981-3000.
[25] Liu, K., Zhang, Z. J., Hu, J. F., et al., 2001, Frequency band dependence of S-wave splitting in China mainland and its implications. Science in China (Series D), 31(2), 155-162.
[26] Liu, E. R., Yue, J. H., and Pan, D. M., 2006, Frequency-dependent anisotropy: Effects of multiple fracture sets on shear-wave polarizations. Chinese J. Geophys., 49(5), 1401-1409 (in Chinese).
[27] Liu, E. R., Chapman, M., Zhang, Z. J., and Queen, J. H., 2006, Frequency-dependent anisotropy: Effects of multiple fracture sets on shear polarizations. Wave Motion, 44, 44-57.
[28] Liu, Y. Y., 2012, Studying on the response of seismic waves in medium with multiple sets of multi-scale fractures. MSc Thesis, China University of Geosciences, Beijing.
[29] Maultzsch, S., Chapman, M., Liu, E., et al., 2003, Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements. Geophys. Prospect., 51(5), 381-392.
[30] Maultzsch, S., Chapman, M., Liu, E., and Li, X. Y., 2007a, Observation of anisotropic attenuation in VSP data. Journal of Seismic Exploration, 16, 2-4, 145-158.
[31] Maultzsch, S., Chapman, M., Liu, E., and Li, X. Y., 2007b, Modeling and analysis of attenuation in multiazimuth VSP data from the Clair field. Geophys. Prospect., 55, 627-642.
[32] Park-Nolte, L. J., and Nolte, D. D., 1992, Frequency dependence of fracture stiffness. Geophys. Res. Lett., 19(3), 325-328.
[33] Pointer, T., Liu, E., and Hudson, J. A., 2000, Seismic wave propagation in cracked porous media. Geophys. J. Int., 142, 199-231.
[34] Schoenberg, M., Dean, S., and Sayers, C. M., 1999, Azimuthal-dependent turning of seismic waves reflected from fractured reservoirs. Geophysics, 64(4), 1160-1171.
[35] Shi, S. H., 2007, Dependency relationship of fracture size, anisotropy and frequency in HTI media based on developing equivalent media model. PhD. Thesis, Jilin University, China.
[36] Wei, X. C., Lu, M. H., Ba, J., et al., 2008, Dispersion and attenuation of elastic waves in a viscous fluid-saturated anisotropic porous solid. Chinese Journal of Geophysics, 51(1), 213-220.
[1] 王浩,李宁,王才志,武宏亮,刘鹏,李雨生,刘英明,原野. 井旁裂缝对偶极横波反射波幅度影响分析*[J]. 应用地球物理, 2019, 16(1): 1-14.
[2] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[3] 段文星,肖承文,艾勇,信毅,朱雷. 用Lamb波进行深水隔水管气侵早期监测*[J]. 应用地球物理, 2019, 16(1): 28-35.
[4] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[5] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[6] 王德营,孔雪,董烈乾,陈立华,王永军,王晓晨. 一种非白噪反射系数序列的预测反褶积方法*[J]. 应用地球物理, 2019, 16(1): 109-123.
[7] 李皓,李国发,郭祥辉,孙夕平 ,王建富. 基于非稳态反演的气枪阵列子波方向性反褶积?[J]. 应用地球物理, 2019, 16(1): 124-132.
[8] 曲英铭,孙军治,李振春,黄建平,李海鹏,孙文之. 起伏海底界面上覆液相弹性介质的海底电缆数据正演模拟与波形分离方法[J]. 应用地球物理, 2018, 15(3-4): 432-447.
[9] 陈猛,刘嘉辉,崔永福,胡天跃,陈飞旭,匡伟康,张振. 基于迭代虚同相轴方法的叠后层间多次波衰减[J]. 应用地球物理, 2018, 15(3-4): 491-499.
[10] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[11] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[12] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[13] 宫昊,陈浩,何晓,苏畅,王秀明,王柏村,严晓辉. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
[14] 闫建平,何旭,胡钦红,梁强,唐洪明,冯春珍,耿斌. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
[15] 檀文慧,巴晶,郭梦秋,李辉,张琳,于庭,陈浩. 致密油粉砂岩脆性特征实验分析研究[J]. 应用地球物理, 2018, 15(2): 175-187.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司