APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 280-289    DOI: 10.1007/s11770-018-0682-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
爆破震动与煤岩破裂微震信号辨识研究
张杏莉1,2,贾瑞生1,2,卢新明1,2,彭延军1,2,赵卫东1,2
1. 计算机科学与工程学院,山东科技大学,青岛 266590
2. 山东省智慧矿山信息技术省级重点实验室,山东科技大学,青岛 266590
Identification of blasting vibration and coal-rock fracturing microseismic signals
Zhang Xing-Li1,2, Jia Rui-Sheng1,2, Lu Xin-Ming1,2, Peng Yan-Jun1,2, and Zhao Wei-Dong1,2
1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
2. Shandong Province Key Laboratory of Wisdom Mine Information Technology, Shandong University of Science and Technology, Qingdao 266590, China.
 全文: PDF (771 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对微震监测系统中煤岩破裂微震信号与爆破震动信号难以辨识的问题,提出了基于变分模态分解的微震信号特征提取及分类辨识方法。首先,采用VMD将原始信号分解为一系列按频率从高到低的变分模态分量;其次,提取各模态分量占原信号的能量百分比值构成特征向量,计算能量分布重心系数;最后,利用决策树桩法实现对煤岩破裂微震信号与爆破震动信号的分类辨识。实验结果表明:VMD可实现信号各分量的有效分离,其中,煤岩破裂微震信号的能量主要集中于~分量中,爆破震动信号的能量主要集中于~分量中,对比由能量分布特征向量降维后的能量分布重心系数,可实现对两类微震波形的分类辨识。通过与EMD、小波包分解方法的对比分析,验证了该方法的优越性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词煤岩破裂微震   爆破震动   变分模态分解   信号识别     
Abstract: A new method based on variational mode decomposition (VMD) is proposed to distinguish between coal-rock fracturing and blasting vibration microseismic signals. First, the signals are decomposed to obtain the variational mode components, which are ranked by frequency in descending order. Second, each mode component is extracted to form the eigenvector of the energy of the original signal and calculate the center of gravity coefficient of the energy distribution plane. Finally, the coal-rock fracturing and blasting vibration signals are classified using a decision tree stump. Experimental results suggest that VMD can effectively separate the signal components into coal-rock fracturing and blasting vibration signals based on frequency. The contrast in the energy distribution center coefficient after the dimension reduction of the energy distribution eigenvector accurately identifies the two types of microseismic signals. The method is verified by comparing it to EMD and wavelet packet decomposition.
Key wordsCoal-rock fracturing microseismic   blasting vibration   variational mode decomposition   signal identification   
收稿日期: 2017-10-03;
基金资助:

本研究由国家重点研发计划专项(编号:2016YFC0801406)、山东省重点研发计划(编号:2016ZDJS02A05和2018GGX109013)和山东省自然科学基金(编号:ZR2018MEE008)联合资助。

引用本文:   
. 爆破震动与煤岩破裂微震信号辨识研究[J]. 应用地球物理, 2018, 15(2): 280-289.
. Identification of blasting vibration and coal-rock fracturing microseismic signals[J]. APPLIED GEOPHYSICS, 2018, 15(2): 280-289.
 
[1] Akaike, H., 1971, Information theory and an extension of the maximum likelihood principle: 2nd International Symposium on Information Theory, 267−281.
[2] Allen, R. V., 1978, Automatic earthquake recognition and timing from single traces: Bull.seism.soc.am, 68(5), 1521−1532.
[3] Alvanitopoulos, P. F., Papavasileiou, M., Andreadis, I., and Elenas, A., 2012, Seismic intensity feature construction based on the Hilbert-Huang transform: IEEE Transactions on Instrumentation and Measurement, 61(2), 326−337.
[4] Allmann, B. P., Shearer, P. M., and Hauksson, E., 2008, Spectral discrimination between quarry blasts and earthquakes in Southern California: Bulletin of the Seismological Society of America, 98(4), 2073−7079.
[5] Dong, L. J., Wesseloo, J., Potvin, Y., and Li, X., 2016, Discrimination of mine seismic events and blasts using the fisher classifier, naive Bayesian classifier and logistric regression: Rock Mechanics and Rock Engineering, 49(1), 183−211.
[6] Gaci, S., 2014, The use of wavelet-based denoising techniques to enhance the first-arrival picking on seismic traces: IEEE Transactions on Geoscience and Remote Sensing, 52(8), 4558−4563.
[7] Huang, H. M., Bian, Y. J., Lu, S. J., Jiang, Z. F., and Li, R., 2010, A wavelet feature research on seismic waveforms of earthquakes and explosions: Acta Seismologica Sinica, 32(3), 270−276.
[8] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., and Zheng, Q., 1998, The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis: Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 454(1971), 903−995.
[9] Jiang, F. X., Yin, Y. M., Zhu, Q. J., Li, S. X., and Yu, Z. X., 2014, Feature extraction and classification of mining microseismic waveforms via multi-channels analysis: Journal of China Coal Society, 39(2), 229−237.
[10] Jia, R. S., Zhao, T. B., Sun, H. M., and Yan, X. H., 2015, Micro-seismic signal denoising method based on empirical mode decomposition and independent component analysis: Chinese Journal of Geophysics, 58(3), 1013−1023. doi:10.6038/CJG20150326
[11] Jia, R. S., Sun, H. M., Peng, Y. J., Liang, Y. Q., and Lu, X. M., 2016, Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine: Journal of Seismology, 21(4), 1−14.
[12] Konstantin, D., and Dominique, Z., 2014, Variation mode decomposition: IEEE Transactions on Signal Processing, 62(3), 531−544.
[13] Lu, C. P., Dou, L. M., Wu, X. R., Wang, H. M., and Qin, Y. H., 2005, Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material: Chinese Journal of Geotechnical Engineering, 27(7), 772−775.
[14] Liu, X. Q., Shen, P., Zhang, L., and Li, Y. H., 2003, Using method of energy linearity in wavelet transform to distinguish explosion or collapse from nature earthquake: Northwestern Seismological Journal, 25(3), 204−209.
[15] Ma, J., Zhao, G. Y., Dong, L. J., Chen, G. H., and Zhang, C. X., 2015, A comparison of mine seismic discriminators based on features of source parameters to waveform characteristics: Shock and Vibration, 2015(1), 1−10.
[16] Shang, X. Y., Li, X. B., Peng, K., Dong, L. J., and Wang, Z. W., 2016, Feature extraction and classification of mine microseism and blast based on EMD_SVD: Chinese Journal of Geotechnical Engineering, 38(10), 1849−1858.
[17] Tang, S. F., Tong, M. M., Pan, Y. X., He, X. M., and Lai, X. S., 2011, Energy spectrum coefficient analysis of wavelet features for coal rupture microseismic signal: Chinese Journal of Scientific Instrument, 32(7), 1522−1527.
[18] Tang, G. J., and Wang, X. L., 2015, Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing: Journal of Xi’an JiaoTong University, 49(5), 73−81.
[19] Wang, B. L., 2018, Automatic pickup of arrival time of channel wave based on multi-channel constraints: Applied Geophysics, 15(1), 118−124.
[20] Wu, X., Qian, J. S., Wang, H. Y., and Qin, H. C., 2014, Study on multi-scale nonlinear feature extraction and signal identification for microseismic signal: Chinese Journal of Scientific Instrument, 35(5), 969−975.
[21] Xie, P., Yang, F. M., Li, X. X., Yang, Y., Chen, X. L., and Zhang, L. T., 2016, Functional coupling analyses of electroencephalogram and electromyogram based on variational mode decomposition-transfer entropy: Acta Physica Sinica, 65(11), 11870−1:9.
[22] Zhu, Q. J., Jiang, F. X., Yu, Z. X., Yin, Y. M., and Lu, L., 2012a, Study on energy distribution characters about blasting vibration and rock fracture microseismic signal: Chinese Journal of Rock Mechanics and Engineering, 31(4), 723−730.
[23] Zhu, Q. J., Jiang, F. X., Yin, Y. M., Yu, Z. X., and Wen, J. L., 2012b, Classification of mine microseismic events based on wavelet-fractal method and pattern recognition: Chinese Journal of Geotechnical Engineering, 34(11), 2036−2042.
[24] Zhao, G. Y., Ma, J., Dong, L. J., Li, X. B., and Chen, G. H., 2015, Classification of mine blasts and microseismic events usingstarting-up features in seismograms: Transactions of Nonferrous Metals Societyof China, 25(10), 3410−3420.
[25] Zhang, M., Zhu, Y. L., Zhang, N., and Zhang, Y. Y., 2016, Feature extraction of transformer partial discharge signals based on varitional mode decomposition and multi-scale permutation entropy: Journal of North China Electric Power University, 43(6), 31−37.
[26] Zhang, X. L., Lu, X. M., Jia R. S., and Kan, S. T., 2018, Micro-seismic signal denoising method based on variational mode decomposition and energy entropy: Journal of China Coal Society, 43(2), 356−363.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司