APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 261-270    DOI: 10.1007/s11770-018-0669-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于炮采样的多尺度全波形反演
史才旺1,2,3,何兵寿1,2,3
1. 中国海洋大学,山东,青岛 266100
2. 青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室,山东,青岛 266071
3. 海底科学与探测技术教育部重点实验室,山东,青岛 266100
Multiscale full-waveform inversion based on shot subsampling
Shi Cai-Wang1,2,3 and He Bing-Shou1,2,3
1. Ocean University of China, Qingdao 266100, China.
2. Evaluation and Detection Technology Laboratory of Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Qingdao 266100, China.
 全文: PDF (1145 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规全波形反演利用全部炮集参与计算,反演的计算量巨大。针对这一问题,本文分析了不同频率反演对炮数的需求,进而提出一种基于频率多尺度反演方法的加速策略。该方法利用反演所需炮数与频率正相关的特性,在反演低频数据时,每次迭代只抽取一部分炮集参与反演,频率升高时,相应地引入更多的炮集参与运算,两次迭代之间通过组内随机炮采样的方法实现炮集的轮换,避免炮集信息的丢失。该方法通过降低反演炮数从而减少计算量,由于不涉及炮集的串扰,因此不会引入额外的噪声,也不受限于观测系统。模型测试结果表明,该方法在炮集数量较多时可以明显减少计算时间,同时,该方法具有一定的抗噪能力,对含噪声的地震记录也能得到较好的反演结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词波形   反演   频率   炮采样     
Abstract: Conventional full-waveform inversion is computationally intensive because it considers all shots in each iteration. To tackle this, we establish the number of shots needed and propose multiscale inversion in the frequency domain while using only the shots that are positively correlated with frequency. When using low-frequency data, the method considers only a small number of shots and raw data. More shots are used with increasing frequency. The random-in-group subsampling method is used to rotate the shots between iterations and avoid the loss of shot information. By reducing the number of shots in the inversion, we decrease the computational cost. There is no crosstalk between shots, no noise addition, and no observational limits. Numerical modeling suggests that the proposed method reduces the computing time, is more robust to noise, and produces better velocity models when using data with noise.
Key wordsWaveform   inversion   frequency   shot subsampling   
收稿日期: 2017-02-08;
基金资助:

本研究由中央高校基本科研业务费专项(编号:201822011)、国家自然科学基金(编号:41674118)和国家重大科技专项(编号:2016ZX05027002)联合资助。

引用本文:   
. 基于炮采样的多尺度全波形反演[J]. 应用地球物理, 2018, 15(2): 261-270.
. Multiscale full-waveform inversion based on shot subsampling[J]. APPLIED GEOPHYSICS, 2018, 15(2): 261-270.
 
[1] Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2011, An efficient frequency-domain full waveform inversion method using simultaneous encoded sources: Geophysics, 76(76), R109−R124.
[2] Brossier, R., Operto, S., and Virieux, J., 2009, Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion: Geophysics, 74(6), WCC105−WCC118.
[3] Bunks, C., Saleck, F. M., Zaleski, S., et al., 1995, Multiscale seismic waveform inversion: Geophysics, 60(5), 1457−1473.
[4] Choi, Y., and Alkhalifah, T., 2012, Application of multi-source waveform inversion to marine streamer data using the global correlation norm: Geophysical Prospecting, 60(4),748-758.
[5] Díaz, E., and Guitton, A., 2011, Fast full waveform inversion with random shot decimation: 81st Annual International Meeting, SEG, Expanded Abstracts, 2804−2808.
[6] Ha, W., and Shin, C., 2013, Efficient Laplace-domain full waveform inversion using a cyclic shot subsampling method: Geophysics, 78(2), R37−R46.
[7] Han, M., Han, L. G., Liu, C. C., et al., 2013, Frequency-domain auto-adapting full waveform inversion with blended source and frequency-group encoding: Applied Geophysics, 10(1), 41-52.
[8] Jo, C. H., Suh, J. H., and Shin, C., 1996, An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator: Geophysics, 61(2), 529−537.
[9] Krebs, J. R., Anderson J. E., Hinkley D., et al., 2009, Fast full-wavefield seismic inversion using encoded sources: Geophysics, 74(6), WCC177−WCC188.
[10] Liu, C., Han, M., Han, L., et al., 2012, Application of principal component analysis for frequency-domain full waveform inversion: 82nd Annual International Meeting, SEG, Expanded Abstracts, 1−5.
[11] Liu, L., Liu, H., Zhang, H., et al., 2013, Full waveform inversion based on modified quasi-Newton equation: Chinese Journal of Geophysics, 56(4), 465−470.
[12] Mao, J., Wu, R. S., and Wang, B., 2012, Multiscale full waveform inversion using GPU: 82nd Annual International Meeting, SEG, Expanded Abstracts, 2012, 1−7.
[13] Miao, Y. K., 2015, Full waveform inversion in time domain based on limited-memory BFGS algorithm: Oil Geophysical Prospecting (in Chinese), 50(3), 469−474.
[14] Operto, S., Virieux, J., Amestoy, P., et al., 2007, 3-D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study: Geophysics, 72(5), 195−211.
[15] Plessix, R. E., 2007, A Helmholtz iterative solver for 3D seismic-imaging problems: Geophysics, 72(5), 185-194.
[16] Pratt, R. G., and Worthington, M. H., 1990, Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method: Geophysical Prospecting, 38(3), 287−310.
[17] Pratt, R. G., Shin, C., and Hick, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133(2), 341−362.
[18] Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64(3), 888−901.
[19] Romero, L. A., Ghiglia, D. C., Ober, C. C., et al., 2000, Phase encoding of shot records in prestack migration: Geophysics, 65(2), 426−436.
[20] Sirgue, L., Etgen, J. T., and Albertin, U., 2008, 3D frequency domain waveform inversion using time domain finite difference methods:70th EAGE Annual Meeting, Expanded Abstracts, F022.
[21] Shin, C., Jang, S., and Min, D. J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory:Geophysical Prospecting,49(5), 592-606.
[22] Shin, J., Ha, W., Jun, H., et al., 2014, 3D Laplace-domain full waveform inversion using a single GPU card: Computers & Geosciences, 67(4), 1−13.
[23] Tao, Y., and Sen, M. K., 2012, Frequency-domain full waveform inversion with plane-wave data: Geophysics, 78(1), R13−R23.
[24] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259−1266.
[25] Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74(6), WCC1-WCC26.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[3] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[4] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[5] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[6] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[7] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[8] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[9] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[10] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[11] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[12] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[13] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[14] 李振春,蔺玉曌,张凯,李媛媛,于振南. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
[15] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司