APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 253-260    DOI: 10.1007/s11770-018-0668-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
窗函数交错网格有限差分算子及其优化方法
任英俊1,2,黄建平1,2,雍鹏1,2,3,刘梦丽1,2,崔超1,2,杨明伟1,2
1. 中国石油大学(华东) 地球科学与技术学院,青岛 266580
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
3. 卡尔加里大学数学与统计学系,阿尔伯塔,T2N1N4
Optimized staggered-grid finite-difference operators using window functions
Ren Ying-Jun1,2, Huang Jian-Ping1,2, Yong Peng1,2,3, Liu Meng-Li1,2, Cui Chao1,2, and Yang Ming-Wei1,2
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
 全文: PDF (712 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 交错网格有限差分的方法现已被广泛运用到地震波正演模拟中,而正演的精度将会直接影响到后续反演、偏移成像的精度。有限差分正演模拟研究的关键问题之一是如何有效地压制数值频散。窗函数法选取适当的窗函数去截断伪谱法的空间褶积序列,从而得到优化的有限差分算子以压制数值频散。传统窗函数法得到的有限差分算子,在低波数域内具有较高的精度,而在高波数域内,精度迅速下降。在此基础上,本文将交错网格有限差分系数的求取转化为最小二乘问题,将窗函数截断得到的交错网格有限差分算子作为迭代初值,设定误差范围确定优化区间,并采用共轭梯度法迭代求解。不失一般性,本文选取了常用的三种窗函数去截断得到有限差分算子及其优化差分算子,并将优化前后差分算子做对比验证。理论分析和数值模拟的结果表明:在窗函数的基础上,使用本文最小二乘优化方法得到的交错网格有限差分算子比传统窗函数法交错网格有限差分算子具有更高的精度,能够更好地压制数值频散。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词窗函数   交错网格有限差分算子   最小二乘   数值频散     
Abstract: The staggered-grid finite-difference (SGFD) method has been widely used in seismic forward modeling. The precision of the forward modeling results directly affects the results of the subsequent seismic inversion and migration. Numerical dispersion is one of the problems in this method. The window function method can reduce dispersion by replacing the finite-difference operators with window operators, obtained by truncating the spatial convolution series of the pseudospectral method. Although the window operators have high precision in the low-wavenumber domain, their precision decreases rapidly in the high-wavenumber domain. We develop a least squares optimization method to enhance the precision of operators obtained by the window function method. We transform the SGFD problem into a least squares problem and find the best solution iteratively. The window operator is chosen as the initial value and the optimized domain is set by the error threshold. The conjugate gradient method is also adopted to increase the stability of the solution. Approximation error analysis and numerical simulation results suggest that the proposed method increases the precision of the window function operators and decreases the numerical dispersion.
Key wordsStaggered-grid finite-difference operator   window function   least squares   numerical dispersion   
收稿日期: 2017-11-07;
基金资助:

本研究由中国科学院战略性先导科技专项(A)(编号:XDA14010303)、国家自然基金重点项目(编号:41720104006)、国家油气重大专项(编号:2016ZX05002-005-007HZ和2016ZX05014-001-008HZ)、山东省创新工程(编号:2017CXGC1602)、青岛自主创新项目(编号:16-5-1-40-jch和 17CX05011)。

引用本文:   
. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
. Optimized staggered-grid finite-difference operators using window functions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 253-260.
 
[1] Chao, C., Huang, J. P., Li, Z. C., et al., 2017, Reflection full-waveform inversion using a modified phase misfit function[J]: Applied Geophysics (English Edition), 14(3), 407-418.
[2] Chu, C. L., and Stoffa, P. L., 2012, Determination of finite-difference weights using scaled binomial windows: Geophysics, 77(3), W17-W26. doi: 10.1190/GEO2011-0336.1
[3] Diniz, P. S. R., Da Silva, E. A. B., Netto, S. L., 2010, Digital signal processing: system analysis and design [M], Cambridge University Press.
[4] Fornberg, B., 1987, The pseudospectral method: Comparisons with finite differences for the elastic wave equation: Geophysics, 52(4), 483-501. doi: 10.1190/1.1442319
[5] Gazdag, J., 1981, Modeling of the acoustic wave equation with transform methods[J]: Geophysics, 46(6), 854-859.
[6] Harris, F. J., 1978, On the use of windows for harmonic analysis with the discrete Fourier transform [J]: Proceedings of the IEEE, 66(1), 51-83.
[7] Holberg, O., 1987, Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena [J]: Geophysical Prospecting, 35(6), 629-655.
[8] Huang, J., Li, C., Wang, R., et al., 2015, Plane-Wave Least-Squares Reverse Time Migration for Rugged Topography [J]: Journal of Earth Science, 26(4), 471-480.
[9] Igel, H., Mora, P., and Riollet, B., 1995, Anisotropic wave propagation through finite-difference grids. Geophysics, 60(4), 1203-1216. doi: 10.1190/1.1443849
[10] Kaiser, J. F., 1974, Nonrecursive digital filter design using the I_0-Sinh window function: Proceedings of the 1974 IEEE International Symposium on Circuits and Systems, 20-23.
[11] Li, C., Huang, J., Li, Z., et al., 2016, Plane-wave least-square reverse time migration with encoding strategies [J]: Journal of Seismic Exploration, 25(2), 177-197.
[12] Liu, Y., 2013, Globally optimal finite-difference schemes based on least squares, Geophysics, 78(4), T113-T132.
[13] Ren, Z., Liu, Y., and Zhang, Q., 2014, Multiscale viscoacoustic waveform inversion with the second generation wavelet transform and adaptive time-space domain finite-difference method [J]: Geophysical Journal International, 197(2), 948-974.
[14] Robertsson, J. O. A., Blanch, J. O., Symes, W. W., et al., 1994, Galerkin-wavelet modeling of wave propagation: Optimal finitedifference stencil design: Mathematical and Computer Modelling, 19(1), 31-38. doi: 10.1016/0895- 7177(94): 90113-9
[15] Smith, J. O., 2010, Physical audio signal processing, W3K Publishing.
[16] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259-1266.
[17] Wang, Z. Y., Liu, H., Tang, X. D., et al., 2015, Optimized finite-difference operators based on Chebyshev auto-convolution combined window function: Chinese J. Geophysics. (in Chinese), 58(2), 628-642. doi:10.6038/cjg20150224
[18] Yong, P., Huang, J., Li, Z., et al., 2016, Optimized equivalent staggered-grid FD method for time-space domain seismic modeling: Chinese J. Geophysics. (in Chinese), 59(11), 4223-4233.
[19] Yong, P., Huang, J., Li, Z., et al., 2017, Optimized equivalent staggered-grid FD method for elastic wave modelling based on plane wave solutions [J]: Geophysical Journal International, 208(2), 1157-1172.
[20] Zheng, W. Q., Meng, X. H., Liu, J. H., et al., 2016, High precision elastic wave equation forward modeling based on cosine modulated Chebyshev window function: Chinese J. Geophysics. (in Chinese), 59(7), 2650-2662. doi:10.6038/cjg20160728
[1] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[2] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[3] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[4] 武绍江,王一博,马玥,常旭. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
[5] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
[6] 王建,孟小红,刘洪,郑婉秋,贵生. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
[7] 范景文,李振春,张凯,张敏,刘学通. 基于构造导向滤波的多震源最小二乘逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 491-499.
[8] 罗伟平,李洪奇,石宁. 半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用[J]. 应用地球物理, 2016, 13(2): 406-415.
[9] 李文奔, 曾昭发, 李静, 陈雄, 王坤, 夏昭. 频率域航空电磁法2.5维正反演研究[J]. 应用地球物理, 2016, 13(1): 37-47.
[10] 张朝元, 马啸, 杨磊, 宋国杰. 基于八阶NAD算子的保辛分部Runge-Kutta方法及其波场模拟[J]. 应用地球物理, 2014, 11(1): 89-106.
[11] 陈国新, 陈生昌, 王汉闯, 张博. 基于L0范数最小化的地球物理数据稀疏重构[J]. 应用地球物理, 2013, 10(2): 181-190.
[12] 郭书娟, 李振春, 仝兆岐, 马方正, 刘建辉. 基于表层多次波数据的近道地震数据插值方法研究[J]. 应用地球物理, 2011, 8(3): 225-232.
[13] 杜启振, 李宾, 侯波. 横向各向同性介质紧致交错网格有限差分波场模拟[J]. 应用地球物理, 2009, 6(1): 42-49.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司