APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 240-252    DOI: 10.1007/s11770-018-0667-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
多尺度裂缝储层地震预测方法研究
王玲玲1,2,魏建新1,2,黄平3,狄帮让1,2,张福宏3
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3. 中国石油西南油气田分公司勘探开发研究院,四川成都 610041
Seismic prediction method of multiscale fractured reservoir
Wang Ling-Ling1,2, Wei Jian-Xin1,2, Huang Ping3, Di Bang-Rang1,2, and Zhang Fu-Hong3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Research Institute of CNPC Southwest Oil and Gas Field Branch, Chengdu 641500, China.
 全文: PDF (1840 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常用的叠前裂缝预测方法并不能明确区分不同尺度的裂缝,本文研究并提出基于裂缝密度的大、中尺度裂缝定量预测方法。该方法通过基于Curvelet变换的多方向相干分析技术进行大尺度裂缝(大于1/4波长)预测,通过地震方位各向异性方法和叠前衰减地震属性(如频率衰减梯度)进行中尺度裂缝(1/4 ~ 1/100波长)预测,然后将得到的两种不同尺度裂缝的发育强度以裂缝密度为基准进行融合,综合地评价不同尺度裂缝。将该方法运用到裂缝储层地震物理模型中,结果表明,该方法不但克服了叠前衰减属性的方位各向异性预测中尺度裂缝的同时,预测出断层和大尺度裂缝的密度分布不连续的问题,还能对裂缝的尺度进行区分,较准确的定量预测裂缝发育带。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词多尺度   裂缝预测   相干   衰减   地震各向异性     
Abstract: Common prestack fracture prediction methods cannot clearly distinguish multiple-scale fractures. In this study, we propose a prediction method for macro- and mesoscale fractures based on fracture density distribution in reservoirs. First, we detect the macroscale fractures (larger than 1/4 wavelength) using the multidirectional coherence technique that is based on the curvelet transform and the mesoscale fractures (1/4–1/100 wavelength) using the seismic azimuthal anisotropy technique and prestack attenuation attributes, e.g., frequency attenuation gradient. Then, we combine the obtained fracture density distributions into a map and evaluate the variably scaled fractures. Application of the method to a seismic physical model of a fractured reservoir shows that the method overcomes the problem of discontinuous fracture density distribution generated by the prestack seismic azimuthal  anisotropy method, distinguishes the fracture scales, and identifies the fractured zones accurately.
Key wordsMultiscales   fracture detection   coherence   attenuation   seismic anisotropy   
收稿日期: 2017-07-05;
基金资助:

本研究由国家自然科学基金(编号:41474112)和国家科技重大专项(编号:2017ZX05005-004)联合资助。

引用本文:   
. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
. Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
 
[1] An, Y., 2015, Fracture prediction using prestack Q calculation and attenuation anisotropy: Applied Geophysics, 12(3), 432-440.
[2] Behura, J., Tsvankin, I., Jenner, E., et al., 2012, Estimation of interval velocity and attenuation anisotropy from reflection data at Coronation Field: The Leading Edge, 31(5), 580-587.
[3] Candès, E. J., and Donoho, D. L., 1999, Curvelets: a surprisingly effective nonadaptive representation for objects with edges, In Cohen, A., Rabut, C., and Schumaker, L. Eds., Curve and Surface Fitting: Vanderbilt Univ. Press, Saint-Malo.
[4] Candès, E. J., and Donoho, D. L., 2004, New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities: Communications on Pure and Applied Mathematics, 57(2), 219-266.
[5] Clark, R. A., Benson, P. M., Carter, A. J., et al., 2009, Anisotropic P-wave attenuation measured from a multi-azimuth surface seismic reflection survey: Geophysical Prospecting, 57(5), 835-845.
[6] Chen, S. Q., Zeng, L. B., Huang, P., et al., 2016, The application study on the multi-scales integrated prediction method to fractured reservoir description: Applied Geophysics, 13(1), 80-92.
[7] Chichinina, T., Sabinin, V., and Ronquillo-Jarillo, G., 2006, QVOA analysis: P-wave attenuation anisotropy for fracture characterization: Geophysics, 71(3), C37-C48.
[8] Chichinina, T., Obolentseva, I., Gik, L., et al., 2009, Attenuation anisotropy in the linear-slip model: Interpretation of physical modeling data: Geophysics, 74(5), WB165-WB176.
[9] Far, M. E., Sayers, C. M., Thomsen, L., et al., 2013, Seismic characterization of naturally fractured reservoirs using amplitude versus offset and azimuth analysis: Geophysical Prospecting, 61(2), 427-447.
[10] He, Y. D., and Wei, C. G., 2007, The present situation and research direction of evaluation methods in fracture type reservoir: Progress in Geophysics (in Chinese), 22(2), 537-543.
[11] Li, T. T., Wang, Z., Ma, S. Z., et al., 2015, Summary of seismic attributes fusion method: Progress in Geophysics (in Chinese), 30(1), 378-385.
[12] Liu, C. H., 2001, Application of seismic coherent analysis technology to prediction of fractured reservoir: Oil Geophysical Prospecting (in Chinese), 36(2), 238-243.
[13] Macbeth, C., and Li, X. Y., 1999, AVD - an emerging new marine technology for reservoir characterization: acquisition and application: Geophysics, 64(4), 1153-1159.
[14] Maultzsch, S., Chapman, M., Liu, E., et al., 2007, Modelling and analysis of attenuation anisotropy in multi-azimuth VSP data from the Clair field: Geophysical Prospecting, 55(5), 627−642.
[15] Mu, X. L., Zhao, G. L., Tian, Z. Y., et al., 2009, Prediction of fractures in the reservoirs (in Chinese): Petroleum Industry Press, Beijing, 56.
[16] Qu, S. L., Ji, Y. X., Wang, X., et al., 2001, Seismic method for using full-azimuth P wave attribution to detct fracture: Oil Geophysical Prospecting (in Chinese), 36(4), 390-397.
[17] Rüger, A., 1997, P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry: Geophysics, 62(3), 713-722.
[18] Sams, M. S., Neep, J. P., Worthington, M. H., et al., 1997, The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks: Geophysics, 62(5), 1456-1464.
[19] Sigismondi, M. E., and Soldo, J. C., 2003, Curvature attributes and seismic interpretation: Case studies from Argentina basins: The Leading Edge, 22(11), 1122-1126.
[20] Shekar, B., and Tsvankin, I., 2012, Anisotropic attenuation analysis of crosshole data generated during hydraulic fracturing: The Leading Edge, 31(5), 588-593.
[21] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954-1966.
[22] Wang, L., Chen, H. Q., Chen, G. W., et al., 2010, Application of curvature attributes in predicting fracture - developed zone and its orientation: Oil Geophysical Prospecting (in Chinese), 45(6), 885-889.
[23] Wang, L. L., Wei, J. X., Huang, P., et al., 2017, Study of seismic physical modelling of fractured reservoirs: Petroleum Science Bulletin (in Chinese), 02, 210-227.
[24] Wang, S. X., Yuan, S. Y., Yan, B. P., et al., 2016, Directional complex-valued coherence attributes for discontinuous edge detection: Journal of Applied Geophysics, 129, 1-7.
[25] Wang, Y., Chen, X. G., Wang, Y. L., et al., 2014, Application of multiple poststack seismic attributes in the prediction of carboniferous fracture in west Hashan: Progress in Geophysics (in Chinese), 29(4), 1772-1779.
[26] Wang, Y. J., Chen, S. Q., and Li, X. Y., 2015, Anisotropic characteristics of mesoscale fractures and applications to wide azimuth 3D P-wave seismic data: Journal of Geophysics and Engineering, 12(3), 448-464.
[27] Wang, H. Q., Yang, W. Y., Xie, C. H., et al., 2014, Azimuthal anisotropy analysis of different seismic attributes and fracture prediction: Oil Geophysical Prospecting (in Chinese), 49(5), 925-931.
[28] Yin, Z. H., Li, X. Y., Wei, J. X., et al., 2012, A physical modeling study on the 3D P-wave azimuthal anisotropy in HTI media: Chinese Journal Geophysics. (in Chinese), 55(11), 3805−3812.
[29] Yuan, S. Y., Wang, S. X., Tian, N., et al., 2016, Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation: Geophysics, 81(3), V199-V212.
[30] Zheng, J. J., Yin, X. Y., Zhang, G. Z., et al., 2009, Multi-scale analysis technique based on curvelet transform: Oil Geophysical Prospecting (in Chinese), 44(5), 543-547.
[31] Zhang, G. Z., Zheng, J. J., Yin, X. Y., et al., 2011, Identification technology of fracture zone and its strike based on the Curvelet transform: Oil Geophysical Prospecting (in Chinese), 46(5), 757-762.
[32] Zhang, J. Y., He, Z. H., and Huang, D. J., 2010, Application of frequency attenuation gradient in prediction of gas and oil potentials: Progress in Exploration Geophysics, 33(3), 207-211.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[3] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[4] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[5] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[6] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[7] 王万里,杨午阳,魏新建,何欣. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
[8] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[9] 刘学清,王彦春,张贵宾,马胜利,成丽芳,余文武. 叠前FAGVO计算方法及应用[J]. 应用地球物理, 2016, 13(4): 641-648.
[10] 杨涛,高静怀,张兵,王大兴. 基于Kendall一致性度量的地震数据相干估计算法[J]. 应用地球物理, 2016, 13(3): 529-538.
[11] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. 利用改进的共偏移距-共反射面(COCRS)叠加压制地滚波?[J]. 应用地球物理, 2016, 13(2): 353-363.
[12] 陈双全, 曾联波, 黄平, 孙绍寒, 张琬璐, 李向阳. 多尺度裂缝综合预测应用研究[J]. 应用地球物理, 2016, 13(1): 80-92.
[13] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[14] 李媛媛, 李振春, 张凯, 张旋. 基于双级并行的弹性波频率域全波形多尺度反演方法[J]. 应用地球物理, 2015, 12(4): 545-554.
[15] 隋京坤, 郑晓东, 李艳东. 一种基于振幅谱的地震相干属性计算方法[J]. 应用地球物理, 2015, 12(3): 353-361.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司