APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 234-239    DOI: 10.1007/s11770-018-0681-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
伪深度域最小二乘逆时偏移方法及应用
孙小东1,2,贾延睿1,张敏1,李庆洋1,李振春1
1. 中国石油大学(华东),青岛 266500
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
Least squares reverse-time migration in the pseudodepth domain and reservoir exploration
Sun Xiao-Dong1,2, Jia Yan-Rui1, Zhang Min1, Li Qing-Yang1, and Li Zhen-Chun1
1. China University of Petroleum (East China), Qingdao 266580, China.
2. Laboratory for Marine Mineral Resource, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
 全文: PDF (605 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 最小二乘逆时偏移基于反演的思想,能够消除偏移剖面中的假象,并得出振幅相对保真的反射率剖面,这对隐蔽储层识别、岩性油气藏勘探及四维地震具有重要的意义。但是,最小二乘逆时偏移需要利用多次迭代的策略,计算量及存储量巨大,在实际工业界的应用受到一定限制。本文尝试在伪深度域实现最小二乘逆时偏移,并采用了共轭梯度算法,在保证精度的情况下,大大节省了计算成本。伪深度域根据计算区域速度场分布转换到伪深度域后,网格采样点得到大大减少。在伪深度域进行计算,避免了高速区过采样,提高了计算效率。模型及实际资料处理结果表明该方法的正确性和有效性。该方法的实现可以提高最小二乘逆时偏移的实用性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词最小二乘   逆时偏移   伪深度域   共轭梯度     
Abstract: Least squares reverse-time migration (LSRTM) is an inversion method that removes artificial images and preserves the amplitude of reflectivity sections. LSRTM has been used in reservoir exploration and processing of 4D seismic data. LSRTM is, however, a computationally costly and memory-intensive method. In this study, LSRTM in the pseudodepth domain was combined with the conjugate gradient method to reduce the computational cost while maintaining precision. The velocity field in the depth domain was transformed to the velocity field in the pseudodepth domain; thus, the total number of vertical sampling points was reduced and oversampling was avoided. Synthetic and field data were used to validate the proposed method. LSRTM in the pseudodepth domain in conjunction with the conjugate gradient method shows potential in treating field data.
Key wordsLeast squares   reverse-time migration   pseudodepth domain   conjugate gradient   
收稿日期: 2018-02-02;
基金资助:

本研究由国家自然科学基金(编号:41574098)、山东省自然科学基金(编号:ZR201807080087)中央高校基本科研业务费专项资金资助(编号:18CX02059A)、国家自然科学基金(编号:41504100)和国家油气重大专项(编号:2016ZX05006-002)联合资助。

引用本文:   
. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
. Least squares reverse-time migration in the pseudodepth domain and reservoir exploration[J]. APPLIED GEOPHYSICS, 2018, 15(2): 234-239.
 
[1] Alkhalifah, T., Formel, S., and Biondi, B., 2001, The space-time domain: Theory and modeling for anisotropic media: Geophysical Journal International, 144(1), 105−113.
[2] Chen,Y. Q., Dutta G.,Dai, W., andSchuster, G. T., 2017, Q-least-squares reverse time migration with viscoacoustic deblurring filters:Geophysics,82(6), 425−438.
[3] Dai, W.,andSchuster, J., 2009, Least-squares migration of simultaneous sources data with a deblurring filter: 79th Annual Meeting, SEG, Extended Abstract, 2990-2994.
[4] Dai, W.,Boonyasiriwat, C., andSchuster, G. T., 2010, 3D Multi-source Least-squares Reverse Time Migration: 80th Annual Meeting, SEG, Extended Abstract, 3120-3124.
[5] Dutta, G.,andSchuster, G. T., 2014,Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation:Geophysics,79(6), 251-262.
[6] Erlangga, Y.,Kees, V.,Kees, O.,Plessix, R. E., andMulder, W. A.,2004, A robust iterative solver for the two-way wave equation based on a complex shifted-Laplace preconditioner: 74th Annual Meeting, SEG, Extended Abstract, 1897-1900.
[7] Li, G. H., Feng, J. G., and Zhu, G. M., 2011, Quasi-P wave forward modeling in viscoelastic VTI media in frequency-space domain: Chinese Journal of Geophysic, 54(1), 200−207.
[8] Li, Q. Y., Huang, J. P., and Li, Z. C., 2017, Cross-correlation least-squares reverse time migration in the pseudo-time domain: Journal of Geophysics and Engineering, 14(4), 841−851.
[9] Liu, H. W., Ding, R. W., Liu, L., and Liu, H., 2013, Wavefield reconstruction methods for reverse time migration: Journal of Geophysics and Engineering, 10(1), 1−6.
[10] Liu, L., Ding, R. W., Liu, H. W., and Liu, H., 2015, 3D hybrid-domain full waveform inversion on GPU: Computers & Geosciences, 83, 27−36.
[11] Ma, X., and Alkhalifah, T., 2013, Wavefield extrapolation in pseudo-depth domain: Geophysics, 78(2), 81−91.
[12] Schuster, G. T., 1993, Least-squares cross-well migration: 63rd Annual Meeting, SEG, Extended Abstract, 110-113.
[13] Sun,J. Z., Fomel,S., Zhu, T. Y., andHu, J. W.,2016, Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation:Geophysics,81(4), 271-279.
[14] Sun, X. D., Ge, Z. H., and Li, Z. C., 2017, Conjugate gradient and cross-correlation based least-square reverse time migration and its application: Applied Geophysics, 14(3), 381-386.
[15] Tang, Y. X.,2009,Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian:Geophysics,74(6), 95-107.
[16] Wong, M.,Ronen, S., andBiondi, B., 2011, Least-squares reverse time migration/inversion for ocean bottom data: A case study: 81st Annual Meeting, SEG, Extended Abstract, 2369-2373.
[17] Yang, S. T., Wei, J. C., Cheng, J. L., Shi, L. Q., and Wen, Z. J., 2016, Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models: Applied Geophysics, 13(4), 621−630.
[18] Zhang, D. L.,andSchuster, G. T., 2014,Least-squares reverse time migration of multiples:Geophysics, 79(1), 11-21.
[19] Zhang,Y., Duan, L., andXie,Y., 2013, A stable and practical implementation of least-squares reverse time migration: 83rd Annual Meeting, SEG, Extended Abstract, 3716-3720.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[3] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[4] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[5] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[6] 武绍江,王一博,马玥,常旭. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
[7] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[8] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[9] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[10] 王泰涵,黄大年,马国庆,孟兆海,李野. 改进的预处理共轭梯度快速算法在三维重力梯度数据反演中的应用[J]. 应用地球物理, 2017, 14(2): 301-313.
[11] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
[12] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[13] 杨佳佳,栾锡武 ,方刚,刘欣欣,潘军,王小杰. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
[14] 范景文,李振春,张凯,张敏,刘学通. 基于构造导向滤波的多震源最小二乘逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 491-499.
[15] 罗伟平,李洪奇,石宁. 半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用[J]. 应用地球物理, 2016, 13(2): 406-415.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司