APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 222-233    DOI: 10.1007/s11770-018-0670-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于多方向波场分离的逆时偏移成像方法
薛浩1,3,刘洋1,2,3
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)克拉玛依校区石油学院,新疆 834000
3. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
Reverse-time migration using multidirectional wavefield decomposition method
Xue Hao1,3 and Liu Yang1,2,3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. Faculty of Petroleum, Karamay Campus of China University of Petroleum (Beijing), Xinjiang 834000, China.
3. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
 全文: PDF (1091 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 双程波逆时偏移方法具有成像精度高、无倾角限制和能够适应任意复杂速度介质等诸多优点,受到人们的广泛关注。常规逆时偏移采用互相关成像条件,其成像结果中包含了严重的低频噪音和成像噪音。现有的波场分离成像条件可以压制这些噪声,但成像结果中依然存在着不同程度的噪音。本文在常规波场分离成像条件的基础上,提出了一种二维的多方向波场分离成像条件,将震源和检波点波场分别分离为八个方向的子波场,并进行选择性的互相关成像,叠加得到最终的成像结果。数值算例结果表明,本文方法能够有效地消除低频噪音和成像噪音,得到高精度的成像剖面。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词逆时偏移   多方向波场分离   成像   低频噪音     
Abstract: Reverse-time migration has attracted more and more attention owing to the advantages of high imaging accuracy, no dip restriction, and adaptation to complex velocity models. Cross-correlation imaging method is typically used in conventional reverse-time migration that produces images with strong low-frequency noise. Wavefield decomposition imaging can suppress such noise; however, some residual noise persists in the imaging results. We propose a 2D multidirectional wavefield decomposition method based on the traditional wavefield decomposition method. First, source wavefields and receiver wavefields are separated into eight subwavefields, respectively. Second, cross-correlation imaging is applied to selected subwavefields to produce subimages. Finally, the subimages are stacked to generate the final image. Numerical examples suggest that the proposed method can eliminate the low-frequency noise effectively and produce high-quality imaging profiles.
Key wordsReverse-time migration   multidirectional wavefield decomposition   imaging   low-frequency noise   
收稿日期: 2018-03-02;
基金资助:

本研究由国家自然科学基金项目(编号:41474110)和中国石油大学(北京)克拉玛依校区科研启动基金(编号:RCYJ2018A-01-001)联合资助。

引用本文:   
. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
. Reverse-time migration using multidirectional wavefield decomposition method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 222-233.
 
[1] Baysal, E., Kosloff, D., and Sherwood, J. 1983, Reverse time migration: Geophysics, 48(11), 1514-1524.
[2] Chen, T., and He, B., 2014, A normalized wavefield separation cross-correlation imaging conditionfor reverse time migration based on Poynting vector: Applied Geophysics, 11(2), 158-166.
[3] Claerbout, J., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, 467-481.
[4] Du, Q. Z., Zhu, Y. T., Zhang, M. Q., et al., 2013, A study on the strategy of low wavenumber noise suppression for prestack reverse-time depth migration: Chinese Journal Geophysics (in Chinese), 56(7), 2391-2401.
[5] Fei, T. W., Luo, Y., Yang, J., et al., 2015, Removing false images in reverse time migration: The concept of de-primary: Geophysics, 80(6), S237-S244.
[6] Fletcher, R. P., Fowler, P. J., Kitchenside, P., et al., 2006, Suppressing unwanted internal reflections in prestack reverse-time migration: Geophysics, 71(6), E79-E82.
[7] Hu, J. T., and Wang, H. Z., 2015, Reverse time migration using analytical time wavefield extrapolation and separation: Chinese Journal of Geophysics (in Chinese), 58(8), 2886-2895.
[8] Kang, W., and Cheng, J. B., 2012, Methods of suppressing artifacts in prestack reverse time migration: Progress in Geophysics (in Chinese), 27(3), 1163-1172.
[9] Liu, F., Zhang, G., Morton, S. A., et al., 2011, An effective imaging condition for reverse-time migration using wavefield decomposition: Geophysics, 76(1), S29-S39.
[10] Liu, J., Xie, X., and Chen, B., 2017, Reverse-time migration and amplitude correction in the angle-domain based on Poynting vector. Applied Geophysics, 14(4), 505-516.
[11] Loewenthal, D., Stoffa, P. L., and Faria, E. L., 1987, Suppressing the unwanted reflections of the full wave equation: Geophysics, 52(7), 1007-1012.
[12] McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values: Geophysical Prospecting, 31(3), 412-420.
[13] Shen, P., and Albertin, U., 2015, Up-Down separation using Hilbert transformed source for causal imaging condition: 85th Annual International SEG Meeting, Expanded Abstracts, 4175-4179.
[14] Shi, Y., and Wang, Y., 2015, Reverse time migration of 3D vertical seismic profile data: Geophysics, 81(1), S31-S38.
[15] Sun, X., Ge, Z., Li, Z., et al., 2016, The stability problem of reverse time migration for viscoacoustic VTI media. Applied Geophysics, 13(4), 608-613.
[16] Wang, E., and Liu, Y., 2017, The hybrid absorbing boundary condition for one-step extrapolation and its application in wavefield decomposition-based reverse time migration. Journal of Geophysics and Engineering, 14, 1177-1188.
[17] Whitmore, D., 1983, Iterative depth migration by backward time propagation: 43rd Annual International SEG Meeting, Expanded Abstracts, 382-385.
[18] Yang, J., Luan, X., He, B., et al., 2017, Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration. Applied Geophysics, 14(4), 492-504.
[19] Yoon, K., and Marfurt, K. J., 2006, Reverse-time migration using the Poynting vector: Exploration Geophysics, 37(1), 102-107.
[20] Zhang, Y., and Sun, J., 2009, Practical issues in RTM: true amplitude gathers, noise removal and harmonic-source encoding: First Break, 26(1), 29-35.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[3] 宫昊,陈浩,何晓,苏畅,王秀明,王柏村,严晓辉. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
[4] 闫建平,何旭,胡钦红,梁强,唐洪明,冯春珍,耿斌. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
[5] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[6] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[7] 郑确,刘财,田有,朱洪翔. 辽宁省中上地壳双差层析成像及海城地震(Ms 7.3)发震构造解释[J]. 应用地球物理, 2018, 15(1): 125-136.
[8] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[9] 刘继承,谢小碧,陈波. 基于Poynting矢量的角度域逆时偏移成像及对成像幅度的校正[J]. 应用地球物理, 2017, 14(4): 505-516.
[10] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[11] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[12] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[13] 张阔,吴锡令,闫景富,蔡家铁. 水平井两相流动电磁全息测量敏感场[J]. 应用地球物理, 2017, 14(1): 40-48.
[14] 何润,尤加春,刘斌,王彦春,邓世广,张丰麒. 基于粒子群优化算法的高阶广义屏偏移成像[J]. 应用地球物理, 2017, 14(1): 64-72.
[15] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司