APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 197-207    DOI: 10.1007/s11770-018-0674-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于分段线性调频的宽带偶极子声源的测井方法研究
曹雪砷1,2,3,陈浩1,2,3,李平1,2,贺洪斌1,3,周吟秋1,3,王秀明1,2,3
1. 中国科学院声学研究所声场与声信息国家重点实验室,北京100190
2. 中国科学院大学,北京100049
3. 北京市海洋深部钻探测量工程技术研究中心,北京100190
Wideband dipole logging based on segment linear frequency modulation excitation
Cao Xue-Shen1,2,3, Chen Hao1,2,3, Li Ping1,2, He Hong-Bin1,3, Zhou Yin-Qiu1,3, and Wang Xiu-Ming1,2,3
1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China.
3. Beijing Engineering Research Center of sea deep drilling and exploration, Beijing 100190, China.
 全文: PDF (1213 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 宽频带的偶极子信号是进行偶极子频散校正和近井壁成像的基础。为了获得宽带的频散曲线,本文在非线性调频偶极子激励信号的基础上,提出了一种分段线性调频激励信号,从而能简便对弯曲波激发强度曲线进行补偿,进而提升整个频带上的信噪比。利用有限差分方法数值计算了雷克子波声源、线性调频声源、非线性调频声源以及分段线性调频声源在均质硬地层以及径向变化地层两种井孔模型中的响应及其频散特征。结果表明,在信噪比较低的情况下,雷克子波产生的弯曲波频散曲线有效频带集中在艾里相附近,不能得到整个频带的频散曲线,无法获取近井壁及远离井壁的地层信息;线性调频信号可以获得艾里相频段及高频段的有效频散曲线,但无法获得低频段的频散信息,对远离井壁的地层信息探测能量不足;非线性调频信号可以获得整个频带的频散曲线,可以探测较远的地层信息,但不易实现;分段调频信号可以获得与非线性调频信号相同的效果,且易于实现,从而扩展了偶极子的探测范围和提高了速度计算的准确度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词偶极声波测井   频散   分段线性调频   有限差分     
Abstract: A wideband dipole signal is required for dipole dispersion correction and near-borehole imaging. To obtain the broadband flexural wave dispersion, we use a nonlinear frequency modulation (NLFM) signal and propose a segment linear frequency modulation (SLFM) signal as the dipole excitation signal to compensate for the excitation intensity. The signal-to-noise ratio (SNR) of the signal over the entire frequency band is increased. The finite-difference method is used to simulate the responses from a Ricker wavelet, a linear frequency modulation (LFM) signal, an NLFM signal, and an SLFM signal in two borehole models of a homogeneously hard formation and a radially stratified formation. The dispersion and radial tomography results at low SNR of the sound source signals are compared. Numerical modeling suggests that the energy of the flexural waves excited by the Ricker wavelet source is concentrated near the Airy phase. In this case, the dispersion is incomplete and information regarding the formation near or far from the borehole cannot be obtained. The LFM signal yields dispersion information near the Airy phase and the high-frequency range but not in the low-frequency range. Moreover, the information regarding the formation far from the borehole is not accurate. The NLFM signal extends the frequency range of the flexural waves by compensating for the excitation intensity and yields information regarding the formation information, but it is not easy to obtain. The SLFM signal yields the same results as the NLFM signal and is easier to implement. Consequently, the dipole detection range expands and the S-wave velocity calculation accuracy improves.
Key wordsDipole acoustic logging   dispersion   frequency modulation   finite difference   
收稿日期: 2017-12-10;
基金资助:

本研究由国家自然科学基金项目(编号:11574347、11734017、91630308和 11374322)、中国科学院声学研究所青年英才计划项目(编号:QNYC201619)和中国石油科技创新基金项目(编号:2016D-5007-0304)联合资助。

引用本文:   
. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
. Wideband dipole logging based on segment linear frequency modulation excitation[J]. APPLIED GEOPHYSICS, 2018, 15(2): 197-207.
 
[1] Angona, F. A., Zemanek, J., 1987, Shear wave acoustic logging system: US 4649525.
[2] Chen, X. L., and Wang, R. J., 2008, Investigating depth of mode waves in the borehole surrounded by transversely isotropic elastic formation: Journal of Jilin University (Earth Science Edition) (in Chinese), 38(3), 502−507.
[3] Cheng, X. Y., Ju, X. D., Lu, J. Q., et al., 2007, Design of downhole multipole acoustic transducer transmitter with high power: Journal of China University Petroleum (Edition of Natural Science), 31(6), 40−43.
[4] Cook, C. E., and Bernfeld, M., 1967, Radar Signals: An introduction to theory and application: Academic Press, New York, 34−45.
[5] Dai, N., Vafidis, A., and Kanasewich, E. R., 1995, Wave propagation in heterogeneous, porous media: A velocity-stress, finite-difference method: Geophysics, 60(2), 327−340.
[6] Du, Q. Z., Lin, B., and Hou, B., 2009, Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered−grid finite difference scheme: Applied Geophysics, 6(1), 42−49.
[7] Fowle, E. N., 1964, The design of FM pulse-compression signals: IEEE Transactions on Information Theory, 10(1), 61−67.
[8] Franco, J. L. A., Ortiz, M. A. M., De, G. S., et al., 2006, Sonic investigations in and around the borehole: Oilfield Review, 18(1), 14−31.
[9] Ikegami, T., 2003, Acoustic frequency selection in acoustic logging tools: US 6510104.
[10] Kurkjian, A. L., and Chang, S. K., 1987, Method and apparatus for acoustic dipole shear wave well logging: US 4698792.
[11] Lin, M. Y., and Ke, Y. A., 1984, Radar signal theory:National Defense Industry Press, Beijing, 199−203.
[12] Lu, J. Q., Ju, X. D., and Cheng, X. Y., 2009, Transducer firing method for multipole array acoustic logging tool: High Voltage Engineering. (in Chinese), 35(2), 324−328.
[13] Ma, M. M., Chen, H, He, X., et al., 2013, The inversion of shear wave slowness′s radial variations based on the dipole flexural mode dispersion: Chinese J. Geophys. (in Chinese), 56(6), 2077−2087
[14] Men, B. Y., Ju, X. D., Qiao, W. X., et al., 2013, Transducer excitation method for 3D acoustic logging sonde: Technical Acoustics. (in Chinese), 32(5), 390−394.
[15] Sun, B. C., Wang, R. J., Li, W., et al., 2016, Ultra broadband acoustic logging tool for deep reading formation evaluation sign in required: Offshore Technology Conference, OTC−26688.
[16] Tang, X. M., and Cheng, C. H., 2004, Quantitative borehole acoustic methods: Elsevier Science Publishing Co. Inc., San Diego, 22−31.
[17] Tang, X. M., and Patterson, D. J., 2010, Mapping formation radial shear-wave velocity variation by a constrained inversion of borehole flexural-wave dispersion data: Geophysics, 75(6), E183−E190.
[18] Tao, G., Gao, K., Wang, B., et al., 2007, Application of multipole array sonic logging to acid hydralic fracturing: Applied Geophysics, 4(2), 133−137.
[19] Vizitiu, I. C., Anton, L., Popescu, F., et al., 2012, The synthesis of some NLFM laws using the stationary phase principle: International Symposium on Electronics and Telecommunications, IEEE, 377−380.
[20] Walker, K., Granville, J., Kainer, G., et al., 2015, Towards the 3D measurement of formation properties in high-resolution with a continuous depth of Investigation: 90th SPE Annual Technical Conference and Exhibition, SPE−175093−MS.
[21] Wang, B., Ma, M. M., Liu, H., et al., 2016, Inversion of the shear velocity radial profile in a cased borehole: Chinese J. Geophys. (in Chinese), 59(12), 4782−4790.
[22] Wang, J., Chen, D. H., Zhang, H. L., et al., 2012, Studies on phase and group velocities from acoustic logging: Applied Geophysics, 9(1), 108−113.
[23] Wei, D., and Zhou, Z. G., 2012, Application of non-linear frequency-modulation based pulse compression in air-coupled ultrasonic testing: Journal of Mechanical Engineering (in Chinese), 48(16), 8−13.
[24] Zhang, H. L., Wang, X. M., and Zhang, B. X., 2004, Acoustic field and wave in borehole: Science Press, Beijing, 88−89.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 郭志华,宋延杰,王超,唐晓敏. 含黄铁矿泥质砂岩电阻率频散规律实验研究与校正方法*[J]. 应用地球物理, 2019, 16(1): 50-60.
[3] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[4] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[5] 李欣欣,李庆春. 基于Aki公式的主动源瑞雷波频散曲线提取方法研究[J]. 应用地球物理, 2018, 15(2): 290-298.
[6] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[7] 王保利. 基于多道约束的槽波波至时间自动拾取方法研究[J]. 应用地球物理, 2018, 15(1): 118-124.
[8] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[9] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[10] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[11] 张煜,平萍,张双喜. 孔隙介质中面波有限差分模拟及应力镜像条件[J]. 应用地球物理, 2017, 14(1): 105-114.
[12] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[13] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[14] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[15] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司