APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 188-196    DOI: 10.1007/s11770-018-0683-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换
马霄一,王尚旭,赵建国,殷晗钧,赵立明
中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
Velocity dispersion and fluid substitution in sandstone under partially saturated conditions
Ma Xiao-Yi1, Wang Shang-Xu1, Zhao Jian-Guo1, Yin Han-Jun1, and Zhao Li-Ming1
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
 全文: PDF (1148 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在地震频带(2~2000hz)和超声频段(1MHz)测量了四块砂岩样品分别饱和水和饱和甘油条件下的弹性模量。我们观察到,不同水饱和度的高渗透率样品和不同甘油饱和度的低渗透率样品,低频(2-2000Hz)范围内的速度频散是非常很小。然而,在高渗透率样品的不同甘油饱和度条件下和低渗透率样品不同水饱和度条件下,相同的频率范围(2~2000Hz),速度频散却非常明显。观测表明,流体的流动性很大程度上控制着孔隙内流体的运动和孔隙之间的压力。高流动性使得孔隙之间或非均匀区间的孔隙压力容易达到平衡,导致岩石处于一个低频控制状态,而满足Gassmann方程条件。相反,即使在地震频率范围,低流动性也会产生孔隙之间的压力梯度,而引起频散。随着流动性的降低,速度频散曲线显示出了一个向低频区间系统性迁移的趋势。同时,我们针对这些具有纵波速度频散背景下的砂岩样品,探讨了Gassmann理论的应用。预测纵波速度的两个边界公式,分别是Gassmann-Wood和Gassmann-Hill理论。观察表明,波致流机制影响着纵波速度在Gassmann-Wood和Gassmann-Hill理论边界之间的转变。随着流动性的降低,低频(2-2000Hz)纵波速度从Gassmann-Wood理论边界向Gassmann-Hill理论边界移动。同时我们也研究了不同频率下的岩石-流体机制。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词砂岩   饱和度   频散   Gassmann流体替换     
Abstract: The elastic moduli of four sandstone samples are measured at seismic (2−2000 Hz) and ultrasonic (1 MHz) frequencies and water- and glycerin-saturated conditions. We observe that the high-permeability samples under partially water-saturated conditions and the low-permeability samples under partially glycerin-saturated conditions show little dispersion at low frequencies (2−2000 Hz). However, the high-permeability samples under partially glycerin-saturated conditions and the low-permeability samples under partially water-saturated conditions produce strong dispersion in the same frequency range (2−2000 Hz). This suggests that fluid mobility largely controls the pore-fluid movement and pore pressure in a porous medium. High fluid mobility facilitates pore-pressure equilibration either between pores or between heterogeneous regions, resulting in a low-frequency domain where the Gassmann equations are valid. In contrast, low fluid mobility produces pressure gradients even at seismic frequencies, and thus dispersion. The latter shows a systematic shift to lower frequencies with decreasing mobility. Sandstone samples showed variations in Vp as a function of fluid saturation. We explore the applicability of the Gassmann model on sandstone rocks. Two theoretical bounds for the P-velocity are known, the Gassmann–Wood and Gassmann–Hill limits. The observations confirm the effect of wave-induced flow on the transition from the Gassmann–Wood to the Gassmann–Hill limit. With decreasing fluid mobility, the P-velocity at 2–2000 Hz moves from the Gassmann–Wood boundary to the Gassmann–Hill boundary. In addition,, we investigate the mechanisms responsible for this transition.
Key wordsSandstone   saturation   P-wave   dispersion   Gassmann   fluid substitution   
收稿日期: 2018-03-23;
基金资助:

本研究由国家973项目深层油气藏地球物理勘探基础研究资助(编号:2013CB228600)。

引用本文:   
. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
. Velocity dispersion and fluid substitution in sandstone under partially saturated conditions[J]. APPLIED GEOPHYSICS, 2018, 15(2): 188-196.
 
[1] Adam, L., and Otheim, T., 2013, Elastic laboratory measurements and modeling of saturated basalts: Journal of Geophysical Research: Solid Earth, 118, 840-851.
[2] Adelinet, M., Fortin, J., Guéguen Y., Schubnel A., and Geoffroy, L., 2010, Frequency and fluid effects on elastic properties of basalt: Experimental investigations: Geophysical Research Letters, 37, L02303.
[3] Batzle, M. L., Han, D., and Hofmann, R., 2006, Fluid mobility and frequency-dependent seismic velocity-Direct measurements: Geophysics, 71(1), N1-N9.
[4] Berryman, J. G., and Wang H. F., 2000, Elastic wave propagation and attenuation in a double-porosity, dual-permeability medium: International Journal of Rock Mechanics and Mineral Science, 37, 63-78.
[5] Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid: II-Higher frequency range: Journal of the Acoustic Society of America, 28, 179-191.
[6] David, E. C., and Zimmerman, R. W., 2012, Pore structure model for elastic wave velocities in fluid-saturated sandstones: Journal of Geophysical Research, 117, B07210.
[7] Deng, J., Zhou, H., Wang, H., Zhao, J., and Wang, S., 2015, The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves: Chinese Journal of Geophysics, 58, 3389-3400.
[8] Dutta, N. C., and Ode, H., 1979, Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation White model: Part II: Results: Geophysics, 44, 1789-1805.
[9] Gary, M., and Tapan, M., 1998, Bounds on low-frequency seismic velocities in partially saturated rocks: Geophysics, 63, 918-924.
[10] Lucet, N., Rasolofosaon, P. N. J., and Zinszner, 1991, Sonic properties of rocks under confining pressure using the resonant bar technique: J. Acoust. Soc. Am., 89(3), 980-990.
[11] Mavko, G., and Jizba, D., 1991, Estimating grain-scale fluid defects on velocity dispersion in rocks: Geophysics, 56, 1940-1949.
[12] Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The rock physics handbook: Tools for seismic analysis of porous media: Cambridge University Press.
[13] Maxim, L., and Julianna, T. -S., 2009, Direct laboratory observation of patchy saturation and its effects on ultrasonic velocities: The Leading Edge, 24-27.
[14] Mikhaltsevitch, V., Lebedev, M., and Gurevich, B., 2014, A laboratory study of low-frequency wave dispersion and attenuation in water-saturated sandstones: The Leading Edge, 33, 616-622.
[15] Müller, T. M., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review: Geophysics, 75(5), 75A-147A.
[16] Pimienta, L., Fortin J., and Guéguen, Y., 2015a, Bulk modulus dispersion and attenuation in sandstones: Geophysics, 80(2), D111-D127.
[17] Spencer, J. W., and Shine, J., 2016, Seismic wave attenuation and modulus dispersion in sandstones: Geophysics, 81(3), D219-D239.
[18] Wang, S. X., Zhao, J. G., Li, Z. H., et al., 2012, Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range: Journal of Geophysical Research, 117(B6), B06203.
[19] White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40, 224-232.
[20] Yin, H., Wang, S., Zhao, J., Ma, X., Zhao, L., and Cui, Y., 2016, A laboratory study of dispersion and pressure effects in partially saturated tight sandstone at seismic frequencies: 86th Annual International Meeting, SEG, Expanded Abstracts, 3236-3240.
[21] Zhao, J., Tang, G. Y., Deng, J. X., Tong, X. L., and Wang, S. X., 2013, Determination of rock acoustic properties at low frequency: A differential acoustical resonance spectroscopy device and its estimation technique: Geophysical Research Letters, 40, 2975-2982.
[22] Zhao, J. G., Wang, S. X., Tong, X. L., Yin, H. J., Yuan, D. J., Ma, X. Y., Deng, J. X., and Xiong, B., 2015, Geophysical Journal International, 202, 1775-1791.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[3] 郭志华,宋延杰,王超,唐晓敏. 含黄铁矿泥质砂岩电阻率频散规律实验研究与校正方法*[J]. 应用地球物理, 2019, 16(1): 50-60.
[4] 郭志华,宋延杰,唐晓敏,王超. 基于差分方程和通用阿尔奇方程的含黄铁矿混合泥质砂岩电阻率模型[J]. 应用地球物理, 2018, 15(2): 208-221.
[5] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[6] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[7] 李欣欣,李庆春. 基于Aki公式的主动源瑞雷波频散曲线提取方法研究[J]. 应用地球物理, 2018, 15(2): 290-298.
[8] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[9] 王保利. 基于多道约束的槽波波至时间自动拾取方法研究[J]. 应用地球物理, 2018, 15(1): 118-124.
[10] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[11] 闫建平,何旭,耿斌,胡钦红,冯春珍,寇小攀,李兴文. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
[12] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[13] 张煜,平萍,张双喜. 孔隙介质中面波有限差分模拟及应力镜像条件[J]. 应用地球物理, 2017, 14(1): 105-114.
[14] 彭蓉,魏建新,狄帮让,丁拼搏,刘子淳. 砂岩样品的震电效应实验研究[J]. 应用地球物理, 2016, 13(3): 425-436.
[15] 马劲风,李琳,王浩璠,谭明友,崔世凌,张云银,曲志鹏,贾凌云,张树海. CO2地质封存地球物理监测技术[J]. 应用地球物理, 2016, 13(2): 288-306.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司