APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 175-187    DOI: 10.1007/s11770-018-0680-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
致密油粉砂岩脆性特征实验分析研究
檀文慧1,巴晶1,郭梦秋1,李辉2,张琳1,于庭1,陈浩3
1. 河海大学地球科学与工程学院,南京 211100
2. 西安交通大学波动与信息研究所,西安 710000
3. 中国科学院声学研究所 100190
Brittleness characteristics of tight oil siltstones
Tan Wen-Hui1, Ba Jing1, Guo Meng-Qiu1, Li Hui2, Zhang Lin1, Yu Ting1, and Chen Hao3
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China.
2. School of Electronic and Information Engineering, Xi'an Jiaotong University, Xian 710000, China.
3. Institute of Acoustics of the Chinese Academy of Sciences, Beijing 100190, China.
 全文: PDF (1079 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 岩石脆性直接影响储层压裂,是储层压裂改造之前必不可少的环节。本文对松辽盆地青山口组粉砂岩,分析岩石动、静态脆性特征。基于岩石力学实验获得的应力应变的关系,调查岩石的脆塑性体特征,结果显示静态弹性参数获得的脆性指数与应力跌落系数呈现负相关性,其中脆性指数(杨氏模量和泊松比归一化后的均值)与应力跌落系数相关性最好。分析矿物组分与脆性指数、杨氏模量和泊松比的关系,认为相关层系石英、黄铁矿、碳酸盐岩类矿物可作为脆性矿物。基于,在超声波实验中调查了孔隙流体、孔隙度对岩石动态脆性特征的影响,发现孔隙流体能够增强岩石的塑性,降低岩石脆性,且孔隙度越大,岩石脆性降低幅度越大。在饱含不同流体的岩石中,饱气粉砂岩的脆性最高,饱油次之,饱水最小,且饱油、饱水岩石脆性非常接近。对比岩石力学和超声波实验测量结果显示,整体上超声波实验获得的脆性指数比岩石力学实验获得的脆性指数大,不过,二者均随着孔隙度增大而降低,且差值随孔隙度增大而增大。原因在于超声波属于无损测试,而力学实验过程中导致了岩石内部的微裂缝、孔隙发生了改变。此外,低孔隙度岩石的脆性,主要与岩石内部微裂缝的发育程度有关。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词岩石力学   超声波   脆性   矿物组分   孔隙流体   孔隙度     
Abstract: Rock brittleness directly affects reservoir fracturing and its evaluation is essential for establishing fracturing conditions prior to reservoir reforming. Dynamic and static brittleness data were collected from siltstones of the Qingshankou Formation in Songliao Basin. The brittle–plastic transition was investigated based on the stress–strain relation. The results suggest that the brittleness indices calculated by static elastic parameters are negatively correlated with the stress drop coefficient and the brittleness index B2, defined as the average of the normalized Young’s modulus and Poisson’s ratio, is strongly correlated with the stress drop. The brittleness index B2, Young’s modulus, and Poisson’s ratio correlate with the brittle minerals content; that is, quartz, carbonates, and pyrite. We also investigated the correlation between pore fluid and porosity and dynamic brittle characteristic based on index B2. Pore fluid increases the plasticity of rock and reduces brittleness; moreover, with increasing porosity, rock brittleness decreases. The gas-saturated siltstone brittleness index is higher than that in oil- or water-saturated siltstone; the difference in the brittleness indices of oil- and water-saturated siltstone is very small. By comparing the rock mechanics and ultrasonic experiments, we find that the brittleness index obtained from the rock mechanics experiments is smaller than that obtained from the ultrasonic experiments; nevertheless, both decrease with increasing porosity as well as their differences. Ultrasonic waves propagate through the rock specimens without affecting them, whereas rock mechanics experiments are destructive and induce microcracking and porosity increases; consequently, the brittleness of low-porosity rocks is affected by the formation of internal microcrack systems.
Key wordsRock mechanics   ultrasonic wave   brittleness   mineralogy   pore fluid   porosity   
收稿日期: 2018-02-12;
基金资助:

本研究由江苏省特聘教授计划;中央高校基本科研业务费项目(编号:2016B13114)资助。

引用本文:   
. 致密油粉砂岩脆性特征实验分析研究[J]. 应用地球物理, 2018, 15(2): 175-187.
. Brittleness characteristics of tight oil siltstones[J]. APPLIED GEOPHYSICS, 2018, 15(2): 175-187.
 
[1] Al-Harthi, A. A., Al-Amri, R. M., and Shehata, W. M., 1999, The porosity and engineering properties of vesicular basalt in saudi arabia: Engineering Geology, 54, 313−320.
[2] Ai, C., Chou, D. Z., Zhang, J., and Tao, F. Y., 2017, Measurements of mechanical parameters and brittleness anisotropy of shale: Fault-block oil and gas field, 24(5), 647−651.
[3] Brace, W. F., Paulding, B. W., and Scholz, C. H., 1966, Dilatancy in the fracture of crystalline rocks: Journal of Geophysical Research, 71(16), 3939−3953.
[4] Bishop, A. W., 1967, Progressive failure with special reference to the mechanism causing it: In Proc. Geotech. Conf., Oslo, 2, 142−150.
[5] Buller, D., Hughes, S. N., Market, J., Petre, J. E., Spain, D. R., and Odumosu, T., 2010, Petrophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells: In SPE Annual Technical Conference and Exhibition Society of Petroleum Engineers.
[6] Bian, H. Y., Wang, F., Zhang, Y. H., and Yue, C. W., 2015, Experimental study of dynamic and static elastic parameters of tight sandstones under reservoir conditions: Chinese journal of rock mechanics and engineering, 34(S1), 3045−3054.
[7] Chen, J., Zhang, G., Chen, H., and Yin, X. Y., 2014, The construction of shale rock physics effective model and prediction of rock brittleness: 84th Annual International Meeting, SEG, Expanded Abstracts, 2861−2865.
[8] Clark, G., 1966, Deformation moduli of rocks: ASTM STP 402, 133−174.
[9] Davis, G. H., and Reynolds, S., 1996, Structural Geology of Rocks and Regions: 2nd edition Wiley, 19(5).
[10] Fjaer, E., Holt, R. M., Hordrud, P., Raaen, A. M., and Risnes, R., 2008, Petroleum related rock RockMechanic: Developments in Petroleum Science Elsevier.
[11] Goktan, R. M., and Yilmaz, N. G., 2005, A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency: Journal−South African Institute of Mining and Metallurgy, 105(10), 727−732.
[12] Ge, X. R., 1997, Post failure behavior and a brittle-plastic model of brittle rock: Computer Methods and Advances in Geomechanics, 151−160.
[13] Guo, Z., Li, X. Y, Liu, C., Feng, X., and Shen, Y., 2013, A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett shale: Journal of Geophysics and Engineering, 10(2), 25006−25015.
[14] Guo, T., Zhang, S., Ge, H., Wang, X., Lei, X., and Xiao, B., 2015, A new method for evaluation of fracture network formation capacity of rock: Fuel, 140, 778−787.
[15] Hucka, V., and Das, B., 1974, Brittleness determination of rocks by different methods: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 11(10), 389−392.
[16] Hetényi, M., 2011, Handbook of experimental stress analysis: Journal of Applied Mechanics, 45(4), 481−485.
[17] Heidari, M., Khanlari, G. R., and Torabi, K. M., 2014, Effect of Porosity on Rock Brittleness: Rock Mechanics and Rock Engineering, 47(2), 785−790.
[18] Jarvie, D. M., Hill, R. J., and Ruble, T. E., 2007, Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment: AAPG Bulletin, 91(4), 475−499.
[19] Li, Q. H., Chen, M., Jin, Y., Wang, F. P., Hou, B., and Zhang, B. W., 2012, Indoor evaluation method for shale brittleness and improvement: Chinese Journal of Rock Mechanics and Engineering, 31(8), 1680−1685.
[20] Li, J., 2013, Analysis on Mineral Components and Frangibility of Shales in Dongying Depression: Acta Sedimentologica Sinica, 31(4), 616−620.
[21] Lai, J., Wang, G., Huang, L., Li, W., Ran, Y., and Wang, D., 2015, Brittleness index estimation in a tight shaly sandstone reservoir using well logs: Journal of Natural Gas Science & Engineering, 27, 1536−1545.
[22] Lou, N., Zhao, T. Q., and Zhang, Y., 2016, Study on calculation method about brittleness index of tight sandstone reservoirs in Qijia Oil Field: Zhongzhou Coal, (6), 140−144.
[23] Morley, A., 1948, Strength of materials: Journal of the American Society for Naval Engineers, 71(96), 393−398.
[24] Martin, C. D., and Chandler, N. A., 1994, The progressive fracture of Lac du Bonnet granite: In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(6), 643−659.
[25] Martin, J., 2017, A geomechanical approach to evaluate brittleness using well logs: mississippian limestone, northern Oklahoma: Msc, Thesis, The University of Texas Arlington.
[26] Niu, G. F., 2017, Simulation-based research on prediction for tight sandstone reservoir’s mechanical parameters: Msc, Thesis, Dalian University of Technology.
[27] Perez, A. R., 2013, Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett shale: SEG Technical Program Expanded, 2258−2263.
[28] Paul, S., and Sun, C. C., 2017, Lubrication with magnesium stearate increases tablet brittleness: Powder Technology, 309, 126−132.
[29] Rickman, R., Mullen, M. J., Petre, J. E., et al., 2008, A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale: Annual Technical Conference and Exhibition. Society of Petroleum Engineers, SPE 115258.
[30] Rajabzadeh, M. A., Moosavinasab, Z., and Rakhshandehroo, G., 2012, Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks: Rock Mechanics and Rock Engineering, 45(1), 113−122.
[31] Shi, G. C., Ge, X. R., and Lu, Y. D., 2006, Experimental study on coefficients of brittle stress drop of marble: Chinese Journal of Rock Mechanics and Engineering, 25(8), 1625−1631.
[32] Sone, H., and Zoback, M. D., 2013, Mechanical properties of shale-gas reservoir rock−part 2: Ductile creep, brittle strength, and their relation to the elastic modulus: Geophysics, 78, 5−10.
[33] Smart, K. J., Ofoegbu, G. I., Morris, A. P., Mcginnis, R. N., and Ferrill, D. A., 2014, Geomechanical modeling of hydraulic fracturing: why mechanical stratigraphy, stress state, and pre-existing structure matter: AAPG Bulletin, 98(11), 2237−2261.
[34] Tarasov, B., and Potvin, Y., 2013, Universal criteria for rock brittleness estimation under triaxial compression: International Journal of Rock Mechanics and Mining Sciences, 59(4), 57−69.
[35] Wang, D., Ge, H., Wang, J., Meng, F., Suo, Y., and Han, P., 2015, A novel experimental approach for fracability evaluation in tight−gas reservoirs: Journal of Natural Gas Science and Engineering, 23, 239−249.
[36] Xu, G. C., Zhong, G. H., Xie, B., and Huang, T. J., 2014, Petrophysical experiment−based logging evaluation method of shale brittleness: Natural Gas Industry, 34(12), 38−45.
[37] Yagiz, S., 2009, Assessment of brittleness using rock strength and density with punch penetration test: Tunnelling& Underground Space Technology, 24(1), 66−74.
[38] Yang, L., Ge, H., Shen, Y., Zhang, J., Yan, W., Wu, S., and Tang, X., 2015, Imbibition inducing tensile fractures and its influence on in-situ stress analyses: a case study of shale gas drilling: Journal of Natural Gas Science and Engineering, 26, 927−939.
[39] Zhang, L. M., Wang, Z. Q., Li, H. F., and Sun, H., 2008, Theoretical and Experimental Study on Siltstone Brittle Stress Drop in Post-Failure Region: Journal of Experimental Mechanics, 23(3), 234−240.
[40] Zhao, Y., and Mao, N. B., 2015, Elastic parameter calculation and analysis of a shale-gas Well in Sorthern China: Journal of Yangtze University, 12(8), 37−41.
[41] Zhang, Z. Z., Gao, F., Gao, Y. N., and Xu, X. L., 2010, Experimental Study of Brittle Stress Drop Coefficient of Granite Endured High Temperature: Journal of Experimental Mechanics, 25(5), 589−597.
[1] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[2] 李琼,陈杰,何建军. 沁水盆地太原组煤层岩石物理性质、镜质组反射率与微观结构实验研究[J]. 应用地球物理, 2017, 14(4): 481-491.
[3] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[4] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
[5] 朱伟,单蕊. 三维数字岩心透射超声波模拟与速度精度分析[J]. 应用地球物理, 2016, 13(2): 375-381.
[6] 黄欣芮, 黄建平, 李振春, 杨勤勇, 孙启星, 崔伟. 基于各向异性致密砂岩油储层的地震岩石物理建模及脆性指数研究[J]. 应用地球物理, 2015, 12(1): 11-22.
[7] 段文星, 乔文孝车小花, 解辉. 用斜入射超声波评价水泥胶结质量的方法研究[J]. 应用地球物理, 2014, 11(3): 269-276.
[8] 于豪, 巴晶, Carcione Jose, 李劲松, 唐刚, 张兴阳, 何新贞, 欧阳华. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
[9] 郭玉倩, 马宏达, 石开波, 曹宏, 黄录忠, 姚逢昌, 胡天跃. 多孔颗粒上界限模型及其在塔里木碳酸盐岩中的应用[J]. 应用地球物理, 2013, 10(4): 411-422.
[10] 贺锡雷, 贺振华, 王绪本, 熊晓军, 蒋炼. 岩石骨架模型与地震孔隙度反演[J]. 应用地球物理, 2012, 9(3): 349-358.
[11] 张佳佳, 李宏兵, 姚逢昌. 岩石的临界孔隙度反演及横波预测[J]. 应用地球物理, 2012, 9(1): 57-64.
[12] 何涛, 邹长春, 裴发根, 任科英, 孔繁达, 史謌. 饱和储层砂岩中流体粘度引起的超声波速度频散实验研究[J]. 应用地球物理, 2010, 7(2): 114-126.
[13] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 7(1): 1-9.
[14] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 6(1): 1-9.
[15] 李宁, 武宏亮, 冯庆付, 王克文, 石玉江, 李庆峰, 罗兴平. 火山岩、白云岩储层基质孔隙度评价方法及应用效果分析[J]. 应用地球物理, 2009, 6(3): 287-298.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司