APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 165-174    DOI: 10.1007/s11770-018-0675-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
川中侏罗系自流井组大安寨段致密灰岩孔隙结构实验研究
刘允隆1,张元中1,王拥军2,王李庚1
1. 油气资源与探测国家重点实验室,中国石油大学,北京 102249
2. 中国石油勘探开发研究院,北京 100083
The pore structure of tight limestone—Jurassic Ziliujing Formation, Central Sichuan Basin, China
Liu Yun-Long1, Zhang Yuan-Zhong1, Wang Yong-Jun2, and Wang Li-Geng1
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China.
 全文: PDF (903 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 川中侏罗系自流井组大安寨段致密油灰岩储层的孔隙结构极为复杂,却是致密油勘探开发需要解决的关键问题。本文应用扫描电镜、氮气吸附、高压压汞、核磁共振来研究致密灰岩的孔隙结构。结果表明灰岩储层以狭缝型孔隙为主;介孔和宏孔是孔隙体积和比表面积主要贡献者,孔隙结构特征参数排驱压力、平均孔径、均质系数与孔隙度及渗透率相关性较好,可以综合应用于评价储层孔隙结构;将氮气吸附得到的孔径分布与高压压汞得到的孔径分布相结合构造全尺度孔径分布,发现储层主要发育2-50nm的介孔;基于幂函数转换方法,将T2谱转换为孔径分布,转换结果与全尺度孔径分布的一致性较好,表明了T2谱与孔径分布存在幂函数关系;T2几何平均值与岩心全孔径孔隙结构参数具有相关性,可作为评价储层孔隙结构特征参数。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘允隆
张元中1
王拥军
王李庚
关键词致密油   致密灰岩   孔隙结构   氮气吸附   高压压汞   核磁共振     
Abstract: The pore structure of the tight limestone in the Daanzhai Member of the Ziliujing Formation, Jurassic System, in central Sichuan Basin, China, is complex but essential to the exploration and development of tight oil. The pore structure of the tight limestone is studied by using scanning electron microscopy (SEM), nitrogen adsorption, high-pressure mercury intrusion, and nuclear magnetic resonance (NMR). The experimental results suggest that the pores are mainly slit pores and mesopores and macropores contribute to the pore volume and specific surface. The displacement pressure, average pore size, and homogeneity coefficient correlate with porosity and permeability and can be used to evaluate the pore structure. The full pore-size distribution was obtained by combining nitrogen adsorption and high-pressure mercury intrusion. We find that the limestone mainly contains mesopores with diameter of 2−50 nm. The T2 distribution was converted into pore-size distribution, well matching the full pore-size distribution. The relation between T2 and pore size obeys a power law and the geometric mean of T2 correlates with the pore structure and can be used in the pore structure evaluation.
Key wordsTight oil   limestone   pore structure   nitrogen adsorption   mercury intrusion   nuclear magnetic resonance   
收稿日期: 2018-01-10;
基金资助:

本研究由国家自然科学基金(编号:41374144),国家重点基础研究发展计划(973计划)(编号:2014CB239201)和中石化物探重点实验室联合资助。

引用本文:   
刘允隆,张元中1,王拥军等. 川中侏罗系自流井组大安寨段致密灰岩孔隙结构实验研究[J]. 应用地球物理, 2018, 15(2): 165-174.
LIU Yun-Long,ZHANG Yuan-Zhong-1,WANG Yong-Jun et al. The pore structure of tight limestone—Jurassic Ziliujing Formation, Central Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2018, 15(2): 165-174.
 
[1] Al Hinai, A., Rezaee, R., Esteban, L., et al., 2014, Comparisons of pore size distribution: a case from the Western Australian gas shale formations. Journal of Unconventional Oil and Gas Resources, 8, 1−13.
[2] Barrett, E. P., Joyne, L. G., and Halenda, P. P., 1995, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical society, 73(1), 373−380.
[3] Brunauer, S., Emmett, P. H., and Teller., E., 1938, Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60(2), 309−319.
[4] Bustin, R. M., Bustin, A. M. M., Cui, A., et al., 2008, Impact of shale properties on pore structure and storage characteristics. SPE shale gas production conference. SPE 119892. Society of Petroleum Engineers.
[5] Cao, T. T., Song, Z. G., Wang, S. B., et al., 2015, Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China. Marine & Petroleum Geology, 61, 140−150.
[6] Chen, Guojun., 2015, Application of NMR data to evaluation of the pore structure and reservoir with tight oil. Well Logging Technology, 39(1), 57−61.
[7] Chen, W., Hao, Yi., Ni, C., et al., 2013, Reservoir characteristics and controlling factors of Daanzhai Member in Lower Jurassic, Central Sichuan. Journal of Southwest Petroleum University (Science & Technology Edition), 35(5), 7-14.
[8] Clarkson, C. R., Freeman, M., He, L., et al., 2012, Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 95, 371−385.
[9] Feng, R. C., Wu, Y. Y., Tao S. Z., et al., 2015, Sedimentary microfacies characteristics and their control on reservoir in Daanzhai Member, Lower Jurassic, Sichuan Basin. Petroleum Geology & Experiment, 37(3), 320−327.
[10] Gao, H., Li, H. Z., and Andy., 2016, Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones. Journal of Natural Gas Science & Engineering, 28, 536−547.
[11] Ge, X, M., Fan, Y. R., Li, J. T., et al., 2015, Pore structure characterization and classification using multifractal theory—An application in Santanghu basin of western China: Journal of Petroleum Science & Engineering, 127, 297−304.
[12] Gregg, S. J., and Sing, K. S. W., 1982, Adsorption, surface area, and porosity. Academic Press. 220−221.
[13] Guo, H. K., Liu, Q, Li, H. B., et al., 2013, Microstructural characteristics of the Jurassic tight oil reservoir in Sichuan Basin. Journal of ShenZhen University Science and Engineering, 30(3), 306−312.
[14] He, Y. D., Mao, Z. Q., Xiao, L. Z., et al., 2005, A new method to obtain capillary pressure curve using NMR T2 distribution. Journal of Jilin University (Earth Science Edition), 35(2), 177−181.
[15] Jia, C. Z., Zheng, M., and Zhang, Y. F., 2012, Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development, 39(2), 129−136.
[16] Jiang, Z., Zhang, D. X., Zhao, J. L., et al., 2017, Experimental investigation of the pore structure of triassic terrestrial shale in the Yanchang Formation, Ordos Basin, China. Journal of Natural Gas Science & Engineering, 46, 436−450.
[17] Le, Y., Li, X. Q., Bai, R., et al., 2014, Characteristics of tight reservoir in Daanzhai member, Gong-ShanMiao oilfield, Central, Sichuan Basin. Natural Gas Exploration & Development, 37(4), 7−9.
[18] Leng, Z. P., Yang, S. J., Lv, W. F., et al., 2016, Pore structure characterization for tight oil reservoir: taking Chuanzhong tight oil reservoir cores as examples. Fault-Block Oil & Gas Field, 23(2), 161−165.
[19] Li, A. F., Ren, X. X., Wang, G. J., et al., 2015, Characterization of pore structure of low permeability reservoir using a nuclear magnetic resonance method. Journal of China University of Petroleum(Edition of Natural Science), 39(6), 92−98.
[20] Li, Y. H., 1996, Shell limestone reservoir space evolution and its significance in oil and gas of Daanzhai member in Jinhua oil field central Sichuan. Journal of Chengdu Institute of Technology (Science & Technology Edition) (s1), 42−49.
[21] Liu, Q., 2014, Porous flow mechanics of tight oil reservoir in Sichuan Basin. Beijing. Graduated School of Chinese Academy of Sciences (Institute of Porous Flow and Fluid Mechanics).
[22] Liu, T. D., Zhao, T. P., Li, G. R., et al., 2012, An improved method to evaluate pore size distribution of tight sandstone reservoir using NMR. Well Logging Technology, 36(2), 119−123.
[23] Ni, C., Yang, J. J., Chen, W., et al., 2015, Reservoir characteristics and development model of dense limestone: A case study from Daanzhai member in central Sichuan Basin. Lithologic Reservoir, 27(6), 38−47.
[24] Pang, Z. L., Tao, S. Z., Zhang, Q., et al., 2018, Reservoir micro structure of Daanzhai Member of Jurassic and its petroleum significance in Central Sichuan Basin, SW China. Petroleum Exploration and Development, 45(1), 62−72.
[25] Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., 1994, Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66(8), 1739−1758.
[26] Schmitt, M., Fernandes, C. P., Neto, JABDC, et al., 2013, Characterization of pore systems in seal rocks using Nitrogen Gas Adsorption combined with Mercury Injection Capillary Pressure techniques. Marine & Petroleum Geology, 39(1), 138−149.
[27] Sun, W., Li, Z. W., Zhang, W., et al., 2014, Petroleum exploration prospect of Lower Jurassic Daanzhai Member, north-centre of Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 41(1), 1−7.
[28] Tian, H., Zhang, S. C., and Liu, S. B., 2012, Determination of organic-rich shale pore features with mercury injection and gas adsorption methods. Acta Petrolei Sinica, 33(3), 419−427.
[29] Tian, Z. P., Song, X. M., Wang, Y. J., et al., 2017, Classification of lacustrine tight limestone considering matrix pore or fracture: A case study of Daanzhai Member of Jurassic Ziliujing Formation in central Sichuan Basin, SW China. Petroleum Exploration and Development, 44(2), 213−224.
[30] Wang, X. W., Yang, Z. M., Li, H. B., et al., 2010, Experimental study on pore structure of low permeability core with NMR spectra. Journal of Southwest Petroleum University (Science & Technology Edition), 32(2), 69−72.
[31] Washburn, E. W., 1921, The dynamics of capillary flow. Physical review series. 17(3), 273−283.
[32] Wu, C. Y., Cheng, Y. Q., Shen, Y., et al., 2016, Analysis of microscopic pore structures in Yanchang continental shale. Unconventional Oil & Gas, 3(3), 21−26.
[33] Xiao, D. S., Lu, Z. Y., Jiang, S., et al., 2016, Comparison and integration of experimental methods to characterize the full-range pore features of tight gas sandstone—A case study in Songliao Basin of China. Journal of Natural Gas Science and Engineering, 34, 1412−1421.
[34] Xie, L., Wang, X. Z, Zhang, F., et al., 2010, A study of the reservoir of Daanzhai Member in Wenjing-Mingyue area of Sichuan Basin. Geology in China, 37(5), 1393−1398.
[35] Xiong, J., Liu, X. J., and Liang, L, X., 2015, Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 22, 530−539.
[36] Yang, G., Huang, D., Huang, P. H., et al., 2017, Control factors of high and stable production of Jurassic Daanzhai Member tight oil in central Sichuan Basin, SW China. Petroleum Exploration and Development, 44(5), 817−826.
[37] Yao, Y. B., and Liu, D. M., 2012, Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel, 95, 152−158.
[38] Zhang, L. C., Lu, S. F., Xiao, D. S, et al., 2017, Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites. Journal of Natural Gas Science and Engineering, 38, 434−449.
[39] Zhao, D. F., Guo, Y. H., Xie, D. L., et al., 2014, Fractal characteristics of shale reservoir pore based on nitrogen adsorption. Journal of Northeast Petroleum University, 38(6), 100−108.
[40] Zhao, M. H., Sima. L. Q., Yan, Q. B., et al., 2008, Assessment of fracture and method of production forecast of Daanzhai reservoir. Well Logging Technology, 32(30), 277−280.
[41] Zheng, R. C., Guo, C. L., Liang, X. W., et al., 2016, Characteristics and evaluation of reservoir spaces of shale gas (oil) in Daanzhai member of Ziliujing Formation in Sichuan Basin. Lithologic Reservoir, 28(1), 16−29.
[42] Zhou, G. Z., and Liu, H. Q., 2017, Pore structure characteristics of tight oil reservoir in the Daanzhai Member of the Jurassic Ziliujing Formation in Central Sichuan Basin. Science Technology and Engineering, 17(5), 89−97.
[43] Zou, C. N., Zhu, R. K., Wu, S. T., et al., 2012, Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 33(2), 173−187.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 闫建平,何旭,耿斌,胡钦红,冯春珍,寇小攀,李兴文. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
[3] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[4] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[5] 边环玲, 关雎, 毛志强, 鞠晓东, 韩桂琴. 孔隙结构对储层电性及测井解释评价的影响[J]. 应用地球物理, 2014, 11(4): 374-383.
[6] 李传辉, 赵倩, 徐红军, 冯凯, 刘学伟. 基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究[J]. 应用地球物理, 2014, 11(2): 207-214.
[7] 刘道涵, 胡祥云, 李耀国. 基于椭圆极化的核磁共振找水理论研究[J]. 应用地球物理, 2012, 9(4): 365-377.
[8] 谭茂金, 邹友龙, 张晋言, 赵昕. T2, T1)二维核磁共振数值模拟与流体响应分析[J]. 应用地球物理, 2012, 9(4): 401-413.
[9] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[10] 林峰, 王祝文, 李静叶, 张雪昂, 江玉龙. 低信噪比核磁共振T2谱反演算法研究[J]. 应用地球物理, 2011, 8(3): 233-238.
[11] 李潮流, 周灿灿, 李霞, 胡法龙, 张莉, 王伟俊. 一种评价致密砂岩储层孔隙结构的新方法及其应用[J]. 应用地球物理, 2010, 7(3): 283-291.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司