APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (2): 151-164    DOI: 10.1007/s11770-018-0678-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例
闫建平1,2,何旭2,胡钦红3,梁强4,唐洪明1,2,冯春珍5,耿斌6
1.油气藏地质及开发工程国家重点实验室,西南石油大学,四川成都 610500
2.西南石油大学地球科学与技术学院,四川成都 610500
3. 德克萨斯大学阿灵顿分校 地球与环境科学学院,美国 76019
4. 中国石油长庆油田采气二厂,陕西榆林 719000
5. 中国石油集团测井有限公司长庆事业部,陕西西安 718500
6. 中石化胜利油田勘探开发研究院,山东东营 257015
Lower Es3 in Zhanhua Sag, Jiyang Depression: a case study for lithofacies classification in lacustrine mud shale
Yan Jian-Ping1,2, He Xu2, Hu Qin-Hong3, Liang Qiang4, Tang Hong-Ming1,2, Feng Chun-Zhen5, and Geng Bin6
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu 610500, China.
2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China.
3. Department of Earth and Environmental Science, University of Texas at Arlington, Texas 76019, USA.
4. No. 2 Gas Production Plant, Changqing Oilfield Company, PetroChina,Yulin 719000, China.
5. Changqing Division, China Petroleum Logging CO. LTD., Xi’an 718500, China.
6. Institute of Exploration and Development, ShengLi Oil Field, SINOPEC, Dongying 257015, China.
 全文: PDF (1683 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 湖相页岩油气重点关注富含I或II1型有机质纹层状灰质岩相,因此,泥页岩岩相划分除了应考虑矿物组分、层理构造之外,还应特别重视有机质类型及丰度的差异。以济阳坳陷沾化凹陷沙三下亚段(Es3)湖相泥页岩为例,综合利用岩心描述、薄片、电镜、核磁及测井等资料进行岩相类型划分、特征分析及识别方法研究。首先,从层理构造、岩性角度区分泥页岩岩相,并考虑将有机质信息融入到岩相分类中,提出了“构造+岩性+有机质”三重信息结合的湖相泥页岩岩相划分方案。然后,针对岩相三重信息分别进行识别研究,利用测井变量最优滤波分析获得的敏感测井数据三维交会可提高岩性识别精度,同时鉴于曲线分形对层理构造有较好的指示,将敏感无铀伽马曲线分形维数作为交会变量,优化了岩相构造识别方法。最后,通过测井反演的有机碳含量(TOC)、热解烃(S2)地化参数,进一步可得到氢指数(HI),借助氢指数-最大热解峰温度(HI-Tmax)图版能够识别不同岩相中的有机质类型。由此综合建立的湖相泥页岩岩相测井精细分析方法,能够准确地提取泥页岩岩相中构造、岩性、有机质三种信息,为在连续井筒中识别有效页岩储层与寻找油气甜点提供了依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词泥页岩   岩相识别   最优滤波   分形   成像测井     
Abstract: Oil and gas exploration in lacustrine mud shale has focused on laminated calcareous lithofacies rich in type I or type II1 organic matter, taking into account the mineralogy and bedding structure, and type and abundance of organic matter. Using the lower third member of the Shahejie Formation, Zhanhua Sag, Jiyang Depression as the target lithology, we applied core description, thin section observations, electron microscopy imaging, nuclear magnetic resonance, and fullbore formation microimager (FMI) to study the mud shale lithofacies and features. First, the lithofacies were classified by considering the bedding structure, lithology, and organic matter and then a lithofacies classification scheme of lacustrine mud shale was proposed. Second, we used optimal filtering of logging data to distinguish the lithologies. Because the fractals of logging data are good indicators of the bedding structure, gamma-ray radiation was used to optimize the structural identification. Total organic carbon content (TOC) and pyrolyzed hydrocarbons (S2) were calculated from the logging data, and the hydrogen index (HI) was obtained to identify the organic matter type of the different strata (HI vs Tmax). Finally, a method for shale lithofacies identification based on logging data is proposed for exploring mud shale reservoirs and sweet spots from continuous wellbore profiles.
Key wordsmud shale   lithofacies   filtering   fractals   logging   
收稿日期: 2016-08-18;
基金资助:

本研究由国家自然科学基金项目“页岩气储层微观结构及岩石物理响应数值模拟研究”(编号:41202110)和“页岩气储层纳米尺度非均质性研究”(编号:51674211)、四川省应用基础研究计划项目“泥页岩地层周期及高分辨率沉积旋回测井识别研究”(编号:2015JY0200)、油气藏地质及开发工程国家重点实验室(西南石油大学)开放课题“湖相泥页岩岩相类型、特征与电性响应关系研究”(编号:PLN201612)、天然气地质四川省重点实验室开放基金项目“湖相泥页岩地层岩相测井定量识别方法研究”(编号2015trqdz07)和四川省教育厅“天然气地质”创新团队(编号:13TD0024)联合资助。

引用本文:   
. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
. Lower Es3 in Zhanhua Sag, Jiyang Depression: a case study for lithofacies classification in lacustrine mud shale[J]. APPLIED GEOPHYSICS, 2018, 15(2): 151-164.
 
[1] Banik, N. C., 1984, Velocity anisotropy of shales and depth estimation in the North-Sea Basin: Geophysics, 49, 1411-1419.
[2] Cai, J. G., Bao, Y. J., Yang, S. Y., et al., 2007, Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone: Science in China (Series D): Earth Sciences, 37(2), 234−243.
[3] Chen, Q., 2012, Study on sedimentary characteristics of the lower part of the third member of Shahejie formation in Luojia area, Zhanhua Sag: Master's Thesis, China University of Geosciences, Beijing.
[4] Chen, S. Y., Zhang, S., Wang, Y. S., et al., 2016, Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin: Petroleum Exploration and Development, 43(2), 198−208.
[5] Curtis, J. B., 2002, Fractured Shale-Gas System: AAPG Bulletin, 86(11), 1921-1938.
[6] Dario, G., Kristen, S., and Erin, C. S., 2015, Petroelastic and geomechanical classification of lithologic facies in the Marcellus Shale: Interpretation: A Journal of Bible and Theology, 3(1), 51-63.
[7] Diao, H. Y., 2013, Rock mechanical properities and brittleness evaluation of shale reservoir: Acta Petrologica Sinica, 29(9), 3300−3306.
[8] Dong, C. M., Ma, C. F., Lin, C. Y., et al., 2015, A method of classification of shale set: Journal of China University of petroleum, 2015, 39(3), 1−7.
[9] Er, C., Zhao, J. Z., Bai, Y. B., et al., 2013, Reservoir characteristics of the organic-rich shales of the Triassic Yanchang formation in Ordos basin: Oil & gas geology, 34(5), 708−716.
[10] Falconer, K. J., 1990, FractalGeometry: Mathematical Foundations and Applications, Chichester, John Wiley and Sons Ltd.
[11] Guo, X. B., Huang, Z. L., Chen, X. A., et al., 2014, The oil-bearing property characteristics and evaluation of Lucaogou formation shale reservoirs in malang sag: Acta Sedimentologica Sinica, 32(1), 166-173.
[12] Hakimi, M. H., and Ahmed, A. F., 2016, Petroleum generation modeling of the organic-rich shales of Late Jurassic-Early Cretaceous succession from Mintaq-01 well in the Wadi Hajar sub-basin, Yemen: Canadian Journal of Earth Sciences, 53(10), 1749−1774.
[13] Hao, Y. Q., Xie, Z. H.,, Zhou, Z. L., et al., 2012, Discussion on multi-factors identification of mudstone and shale: Petroleum Geology and Recovery Efficiency, 19(6), 16-24.
[14] He, J. H., Ding, W. L., Jiang, Z. X., et al., 2016, Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: A case study from the Es3L shale in the Jiyang Depression, Bohai Bay Basin, Eastern China: Journal of Petroleum Science and Engineering, 145, 238-255.
[15] Hickey, J. J., and Henk, B., 2007, Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T. P. Sims well, Wise County, Texas: AAPG Bulletin, 91(4), 437-443.
[16] Ji, L. M., Qiu, J. L., Zhang, T. W., et al., 2012, Experiments on methane adsorption of common clay minerals in shale: Earth Science-Journal of China University of Geosciences, 37(5), 1044-1050.
[17] Jia, S., 2012, Study on formation and distribution of the shale reservoir in the lower third member of Eogene Shahejie formation in Luojia area of Zhanhua sag: PhD Thesis, China University of Geosciences, Beijing.
[18] Jiang, M., 2011, Study on organic geochemistry features of deep source rocks in Dongying, Zhanhua, and Weibei Sag: PhD Thesis, Chengdu University of Technology, Chengdu.
[19] Jiang, Z. X., Liang, C., Wu, J., et al., 2013, Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks: Acta Petrolei Sinica, 34(6), 1031-1039.
[20] Jiang, Z. X., Zhang, W. Z., Liang, C., et al., 2014, Characteristics and evaluation elements of shale oil reservoir: Acta Petrolei Sinica, 35(1), 184−196.
[21] Liu, S. G., Wenxin, M. A., Jansa, L., et al., 2013, Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China: Energy Exploration & Exploitation, 31(2), 187−220.
[22] Loucks, R. G., and Ruppel, S. C., 2007, Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas: AAPG Bulletin, 91(4), 579−601.
[23] Ma, Y. Q., Fan, M. J., Lu, Y. C., et al., 2016, Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: Implications for depositional controls on organic matter accumulation: Marine & Petroleum Geology, 75, 291-309.
[24] Milliken, K., 2014, A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks: Journal of Sedimentary Research, 84(12), 1185-1199.
[25] Mohammed, A. S., Ghaithan, A. A. M., Feng, L., 2017, Development of shale reservoirs: Knowledge gained from developments in North America: Journal of Petroleum Science and Engineering, 157, 164-186.
[26] Oschmann, W., 1988, Kimmeridge clay sedimentation a new cyclic model: Palaeogeography Palaeoclimatology Palaeoecology, 65B, 217-251.
[27] Pang, J., and North, C. P., 1996, Fractals and their applicability in geological wireline log analysis: Journal of Petroleum Geology, 19(3), 339-350.
[28] Potter, P. E., Maynard, J. B., and Depetris, P. J., 2005, Mud and Mudstones: Springer Berlin Heidelberg.
[29] Putrohari, R. D., 2000, Fractal geometry in the evaluation a stratigraphic records with an example on a well log data: AAPG Bulletin, 84(9), 1478.
[30] Quaid, K. J., Eric, M. R. and Bob, H., 2017, Lithological and facies analysis of the Roseneath and Murteree shales, Cooper Basin, Australia: Journal of Natural Gas Science and Engineering, 37, 138-168.
[31] Roen, J. B., 1984, Geology of the Devonian black shales of the Appalachian Basin: Organic Geochemistry, 5, 241-254.
[32] Rybacki, E., Meier, T., and Dresen, G., 2016, What controls the mechanical properties of shale rocks? - Part II: Brittleness: Journal of Petroleum Science and Engineering, 144, 39-58.
[33] Sakhaee-Pour, A., and Steven, L. B., 2015, Pore structure of shale: Fuel, 143, 467-475.
[34] Sukru, M. and Caglar, S., 2016, Analysis of carbon dioxide sequestration in shale gas reservoirs by using experimental adsorption data and adsorption models: Journal of Natural Gas Science and Engineering, 36, Part A, 1087-1105.
[35] Tarik, S., Lin, Q. Y., Branko, B., et al., 2017, Microstructural imaging and characterization of oil shale before and after pyrolysis: Fuel, 197, 562-574.
[36] Tian, D., Nicholas, B., Korhan, A., et al., 2017, The impact of rock composition on geomechanical properties of a shale formation: Middle and Upper Devonian Horn River Group shale, Northeast British Columbia, Canada: AAPG Bulletin, 101(2), 177-204.
[37] Wang, G. C., and Carr, T. R., 2012, Marcellus Shale Lithofacies Prediction by Multiclass Neural Network Classification in the Appalachian Basin: Mathematical Geosciences, 44(8), 975-1004.
[38] Wang, G. C., Cheng, G., and Carr, T. R., 2013, The application of improved Neuro Evolution of Augmenting Topologies neural network in Marcellus Shale lithofacies prediction: Computers & Geosciences, 54(4), 50-65.
[39] Wang, G. C., Ju, Y., Carr, T. R., et al., 2015, The hierarchical decomposition method and its application in recognizing Marcellus Shale lithofacies through combining with neural network: Journal of Petroleum Science & Engineering, 127, 469-481.
[40] Wang, M., Zhu, J. J., Yu, G. H., et al., 2013, The shale lithofacies characteristics and logging analysis techniques in Luojia area: Well Logging Technology, 37(4), 426-431.
[41] Wang, X. Y., 2013, Favorable lithofacies classification and evaluation of shale oil and gas in Dongying depression: PhD Thesis, China university of petroleum, Qing Dao.
[42] Wen, H. M., 2003, Study of fractal log interpretation theory and method: PhD Thesis, Chengdu University of Technology, Cheng Du.
[43] Wignall, P. B., 1991, Dysaerobic trace fossils and ichnofabrics in the Upper Jurassic Kimmeridge Clay of southern England: Palaios, 6(3), 264-270.
[44] Yan, J. P., 2007, The study on comprehensive evaluation method of heavy-oil reservoir log data in fine reservoir description: Master's thesis, China University of Petroleum (East China).
[45] Yan, J. P., Cai, J. G., Zhao, M. H., et al., 2008, Study on integration of multiple logging curves and its application in geological stratification: Journal of Xi’an Shiyou University, 23(6), 6-10.
[46] Yan, J. P., Liang, Q., Geng, B., et al., 2017, Log calculation method of geochemical parameters of lacustrine shale and its application: a case of lower Es 3 in Bonan subsag, Zhanhua Sag: Lithologic Reservoirs, 29(4), 109-116.
[47] Zhang, J. C., Lin L. M., Li Y. X., et al., 2012, Classification and evaluation of shale oil: Earth Science Frontiers, 19(5), 322-331.
[48] Zhang, J. Q., Cai, J. G., Wang, X. J., et al., 2013, Palynofacies of lacustrine source rocks in Dongying depression and its’ significance: Journal of Central South University (Science and Technology), 8, 3446-3452.
[49] Zhang, J. Y., 2013, Shale lithofacies logging identification and evaluation: Journal of oil and gas technology, 35(4), 96-103.
[50] Zhang, L. H., Guo, J. J., Tang, H. M., et al., 2015a, Pore structure characteristics of Longmaxi shale in the southern Sichuan Basin: Natural Gas Industry, 35(3), 22-29.
[51] Zhang, P., 2014, Lithofacies prediction of continental mud shale based on geologic parameters: Special oil and gas reservoirs, 21(6), 320-331.
[52] Zhang, S., Chen, S. Y., Yan, J. H., et al., 2015b, Characteristics of shale lithofacies and reservoir space in the 3rd and 4th members of Shahejie formation, the west of Dongying sag: Natural gas geoscience, 26(2), 320-331.
[53] Zhu, X. M., Sedimentary Petrology, 2008: Petroleum Industry Press, Beijing.
[54] Zou, C. N., Dong, D. Z., Yang, H., et al., 2011, Formation conditions and exploration practice of shale gas in China: Natural Gas Industry, 31(12), 26-39.
[1] 宫昊,陈浩,何晓,苏畅,王秀明,王柏村,严晓辉. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
[2] 闫建平,何旭,耿斌,胡钦红,冯春珍,寇小攀,李兴文. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
[3] 黄亚平, 耿建华, 郭彤楼. 一种新的地震属性:基于灰色-消除趋势波动法的分形标度指数[J]. 应用地球物理, 2015, 12(3): 343-352.
[4] 柴华, 李宁, 肖承文, 刘兴礼, 李多丽, 王才志, 吴大成. 利用成像测井自动判别礁滩储层沉积相和岩性[J]. 应用地球物理, 2009, 6(1): 17-29.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司