APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 73-79    DOI: 10.1007/s11770-012-0316-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
分数阶S变换:第一部分,理论
胥德平,郭科
成都理工大学数学地质四川省重点实验室, 四川 成都 610059
Fractional S transform – Part 1: Theory*
Xu De-Ping and Guo Ke
Key Laboratory of Geomathematics of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (696 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 S变换(ST)结合了小波变换和短时傅里叶变换的特性,对信号处理具有良好的局部时频聚集性.分数阶傅里叶变换是一种对非平稳信号分析的工具.本文基于分数阶傅里叶变换和S变换的思想,提出了分数阶S变换(FRST),将S变换从时间-频率域推广到时间-分数阶频率域,推导了它的逆变换公式并研究了其数学性质。分数阶S变换(FRST)具有分数阶傅里叶变换和S变换的优点,增强了S变换对信号处理的灵活性。相比于S变换,分数阶S变换能提高信号时频分辨能力。仿真实验证实了该方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
胥德平
郭科
关键词分数阶S变换   分数阶傅里叶变换   分数阶时频分析     
Abstract: The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we defi ne the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the timefrequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST fl exibility to process signals. Compared to the S transform, the FRST can effectively improve the signal timefrequency resolution capacity. Simulation results show that the proposed method is effective.
Key wordsfractional S transform   fractional Fourier transform   time-frequency analysis   
收稿日期: 2011-12-30;
基金资助:

本研究项目由国家自然科学基金项目(No. 40873035),中国地质调查局项目(No. 1212010916040)和四川省教育厅资助科研项目支持。

引用本文:   
胥德平,郭科. 分数阶S变换:第一部分,理论[J]. 应用地球物理, 2012, 9(1): 73-79.
XU De-Ping,GUO Ke. Fractional S transform – Part 1: Theory*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 73-79.
 
[1] Akan, A., and Çekiç, Y., 2003, A fractional Gabor expansion: Journal of the Franklin Institute, 340(5), 391 - 397.
[2] Akan, A., and Önen, E., 2007, A discrete fractional Gabor expansion for multi-component signals: AEUInternational
[3] Journal of Electronics and Communications, 61(5), 279 - 285.
[4] Almeida, L., 1994, The fractional Fourier transform and time-frequency representations: IEEE Trans. Signal
[5] Process., 42(11), 3084 - 3091.
[6] Capus, C., and Brown, K., 2003, Short-time fractional Fourier methods for the time-frequency representation
[7] of chirp signals: Acoustical Society of America Journal, 113(6), 3253 - 3263.
[8] Durak, L., and Arikan, O., 2003, Short-time Fourier transform: two fundamental properties and optimal
[9] implementation: IEEE Trans. on Signal Processing, 51(5), 1231 - 1242.
[10] Huang, Y., and Suter, B., 1998, The fractional wave packet transform: Multi-dimensional Systems and Signal
[11] Processing, 9(4), 399 - 402.
[12] Li, Y., and Zheng, X., 2007, Wigner-Ville distribution and its application in seismic attenuation estimation: Applied
[13] Geophysics, 4(4), 245 - 254
[14] Mendlovic, D., Zalevsky, Z., Mas, D., García, J., and Ferreira, C., 1997, Fractional wavelet transform: Applied
[15] Optics, 36(20), 4801 - 4806.
[16] Rioul, O., and Vetterli, M., 1991, Wavelets and signal processing: IEEE Signal Processing, 8(4), 14 - 38.
[17] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: the S transform:
[18] IEEE Trans. on Signal Processing, 44(4), 998 - 1001.
[19] Tao, R., Li, Y. L., and Wang, Y., 2010, Short-time fractional Fourier transform and its applications: IEEE Trans.
[20] Signal Process., 58(5), 2568 - 2580.
[21] Wexler, R., 1990, Discrete Gabor expansions: Signal Processing, 21(3), 207 - 220.
[1] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[2] 杜正聪,胥德平,张金明. 分数阶S变换,第二部分:在储层预测及流体识别中的应用[J]. 应用地球物理, 2016, 13(2): 343-352.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司