APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (1): 91-98    DOI: 10.1007/s11770-018-0657-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于非局部贝叶斯地震数据随机噪声压制方法
常德宽1,杨午阳1,王一惠2,杨庆1,魏新建1,冯小英2
1. 中国石油勘探开发研究院西北分院,甘肃兰州 730020
2. 中国石油华北油田地球物理勘探研究院,河北任丘 062552
Random noise suppression for seismic data using a non-local Bayes algorithm
Chang De-Kuan1, Yang Wu-Yang1, Wang Yi-Hui2, Yang Qing1, Wei Xin-Jian1, and Feng Xiao-Ying2
1. Research Institute of Petroleum Exploration & Development-Northwest, PetroChina, Lanzhou 730020, China.
2. Research Institute of  Exploration & Development, Huabei Oilfield Company, Renqiu 062552, China.
 全文: PDF (1401 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对地震数据随机噪声压制问题,本文提出一种基于非局部贝叶斯(Non- local Bayes algorithm) 的滤波方法。NL-Bayes方法使用高斯模型代替NL-means方法中使用全部相似数据块的加权平均,减少对数据结构细节的平滑效应,从而改善去噪效果。在地震数据去噪处理中,根据噪声的方差自适应的计算数据块的大小和高斯模型中数据块的数量,经过两次迭代实现地震数据去噪。第二次迭代中使用第一次迭代去噪后的数据来计算高斯模型块的无偏差均值和协方差,以提高数据块的相似度,使得去噪效果更理想。通过对模型数据和实际数据测试表明,NL-Bayes方法能有效提高地震数据信噪比和满足数据保真性处理的要求。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词非局部贝叶斯   随机噪声   块匹配方法   高斯模型     
Abstract: For random noise suppression of seismic data, we present a non-local Bayes (NL- Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data,  the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.
Key wordsNon-local Bayes   random noise suppression   block-matching   Gaussian model   
收稿日期: 2016-07-22;
基金资助:

本研究由中国石油勘探开发研究院科学研究与技术开发项目(编号:2016ycq02)、中国石油天然气股份公司科学研究与技术开发项目(编号:2015B-3712)和国家科技重大专项课题(编号:2016ZX05007-006)联合资助。

引用本文:   
. 基于非局部贝叶斯地震数据随机噪声压制方法[J]. 应用地球物理, 2018, 15(1): 91-98.
. Random noise suppression for seismic data using a non-local Bayes algorithm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 91-98.
 
[1] Bayes, T., Price, R., and Canton, J., 1763, An essay towards solving a problem in the doctrine of chances: C. Davis, Printer to the Royal Society of London.
[2] Bonar, D., and Sacchi, M., 2012, Denoising seismic data using the nonlocal means algorithm: Geophysics, 77(1), A5−A8.
[3] Buades, A., Coll, B., and Morel, J. M., 2005, A review of image denoising algorithms, with a new one: SIAM Journal on Multiscale Modeling and Simulation, 4(2), 490−530.
[4] Buades, A., Coll, B., and Morel, J. M., 2010, Image denoising algorithms: A new nonlocal principle: SIAM Review, 52(1), 113−147.
[5] Chang, D. K., Wang, Y. H., and Zhang, G. Z., 2015, Seismic Data Denoising Based on Sparse and Redundant Representation: 85th Annual International Meeting, SEG,, Expanded Abstracts, 4693−4697.
[6] Elad, M., and Aharon, M., 2006, Image denoising via sparse and redundant representations over learned dictionaries: IEEE Transactions on Image Processing, 15(12), 3736−3745.
[7] Górszczyk, A., Adamczyk, A., and Malinowski, M., 2014, Application of curvelet denoising to 2D and 3D seismic data—Practical considerations: Journal of Applied Geophysics, 105, 78−94.
[8] Kustowski, B., Cole, J., Martin, H., and Hennenfent, G., 2013, Curvelet noise attenuation with adaptive adjustment for spatio-temporally varying noise: 83th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts 2013, 4299−4303.
[9] Lebrun, M., Buades, A., and Morel, J. M., 2013, A nonlocal Bayesian image denoising algorithm: SIAM Journal on Imaging Sciences, 6(3), 1665−1688.
[10] Neelamani, R., Baumstein, A. I., Gillard, D. G., Hadidi, M. T., and Soroka, W. L., 2008, Coherent and random noise attenuation using the curvelet transform: The Leading Edge, 27(2), 240−248.
[11] Shang, S., Han, L. G., Lv, Q. T., and Tan, C. Q., 2013, Seismic random noise suppression using an adaptive nonlocal means algorithm: Applied Geophysics, 10(1), 33−40.
[12] Tang, G., Ma, J. W., and Yang, H. Z., 2012, Seismic data denoising based on learning-type overcomplete dictionaries: Applied Geophysics, 9(1), 27−32.
[13] Yilmaz, Ö., 2001, Seismic data analysis: Processing, Inversion, and Interpretation of seismic data: Society of Exploration Geophysicists, 658−709.
[14] Yuan, S. Y., and Wang, S. X., 2013, Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints: Journal of Geophysics and Engineering, 10(2), 025001.
[15] Yuan, S. Y., Wang, S. X., and Li, G., 2011, Random noise reduction using Bayesian inversion: Journal of Geophysics and Engineering, 9(1), 60−68.
[16] Zhang, G. Z., Chang, D. K., Wang, Y. H., Li, Z. Z., Zhao, Y., and Yin, X. Y., 2015, 3D seismic random noise suppression with sparse and redundant representation: Oil Geophysical Prospecting, 50(4), 600−606.
[1] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[2] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[3] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[4] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[5] 尚帅, 韩立国, 吕庆田, 谭尘青. 自适应非局部均值地震随机噪声压制[J]. 应用地球物理, 2013, 10(1): 33-40.
[6] 蔡涵鹏, 贺振华, 黄德济. 基于混合时频分析技术的地震数据噪声压制[J]. 应用地球物理, 2011, 8(4): 319-327.
[7] 王德利, 仝中飞, 唐晨, 朱恒. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
[8] 刘志鹏, 陈小宏, 李景叶. 基于ARMA模型非因果空间预测滤波[J]. 应用地球物理, 2009, 6(2): 122-128.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司