APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (1): 78-90    DOI: 10.1007/s11770-018-0663-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
黄河库区淤积泥沙特性的声学参数反演
李长征1,杨勇1,王锐1,颜小飞1
1.黄河水利科学研究院,郑州 450003
Acoustic parameters inversion and sediment properties in the Yellow River reservoir
Li Chang-Zheng1, Yang Yong1, Wang Rui1, and Yan Xiao-Fei1
1.The Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
 全文: PDF (1272 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 水库泥沙淤积层岩土参数是研究河流动力学特性的重要物理指标。传统技术仅能获取少量泥沙测验资料,无法满足库区清淤和治理的需求。本文基于孔隙介质声学理论开展河底表层淤积泥沙的声学参数反演研究。根据Biot理论导出了水-泥沙界面声波反射系数的具体形式,并讨论了Biot模型参数的选择方式;研究声学参数与地学参数的变化关系,包括反射系数与孔隙度、衰减系数与渗透率的联系;通过分析信号频移获取泥沙中声波的衰减系数,且从声呐信号中提取了水-泥沙界面的反射系数,在此基础上提出了一种表层泥沙物性参数的反演方法并给出具体步骤。三门峡库区的探测研究结果表明,粒径估计值与取样测试结果较为符合,说明本文提出的反演方法获取泥沙物性参数是可行的,并可作为一种泥沙粒径的估计方法。本文对库区泥沙物性的精细化探测有重要意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词淤积泥沙   孔隙介质   反射系数   衰减系数   声学反演     
Abstract: The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water–sediment interface is derived based on Biot’s theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water–sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the river-bottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.
Key wordsalluvial sediments   porous media   reflection coefficient   attenuation coefficient   acoustic inversion   
收稿日期: 2017-02-17;
基金资助:

本研究由国家重点研发计划(编号:2016YFC0401608)和黄河水利科学研究院基本科研专项(编号:HKY-JBYW-2016-09和HKY-JBYW-2016-29)资助。

引用本文:   
. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
 
[1] Bachman, R. T., 1985, Acoustic and physical property relationships in marine sediment: The Journal of the Acoustical Society of America, 78(2), 616−621.
[2] Biot, M. A.,1956a, Theory of propagation of elastic waves in a fluid−saturated porous solid. I. Low−frequency range: The Journal of the Acoustical Society of America, 28(2),168−178.
[3] Biot, M. A.,1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range: The Journal of the Acoustical Society of America, 28(2), 179−191.
[4] Bowles, F. A.,1997, Observations on attenuation and shear-wave velocity in fine-grained, marine sediments:The Journal of the Acoustical Society of America, 101(6), 3385−3397.
[5] Chiu, L. Y. S., Chang, A., Lin, Y. T., and Liu, C. S.,2015,Estimating geoacoustic properties of surficial sediments in the North Mien-Hua Canyon region with a chirp sonar profiler: IEEE Journal of Oceanic Engineering, 40(1), 222−236.
[6] Cui, Z. W., Wang, K. X., Cao, Z. L., and Hu, H. S.,2005, Slow waves propagation in BISQ poroelastic model: ACTA PHYSICA SINICA, 53(9), 3083−3089.
[7] Goff, J. A., Kraft, B. J., Mayer, L. A., et al,2004,Seabed characterization on the New Jersey middle and outer shelf: correlatability and spatial variability of seafloor sediment properties: Marine Geology, 209(1), 147−172.Hamilton, E. L., Bucker, H. P., Keir, D. L., Whitney, J. A., 1970, Velocities of compressional and shear waves in marine sediments determined in situ from a research submersible: Journal of Geophysical Research, 75(20), 4039−4049.
[8] Hovem, J. M., and Ingram, G. D., 1979,Viscous attenuation of sound in saturated sand: The Journal of the Acoustical Society of America, 66(6), 1807−1812.
[9] Jannsen, D., Voss, J., and Theilen, F.,1985,Comparison of methods to determine Q in shallow sediments from vertical reflection seismograms: Geophysical Prospecting, 33(4), 479−497.
[10] Kibblewhite, A. C.,1989, Attenuation of sound in marine sediments: A review with emphasis on new low−frequency data: The Journal of the Acoustical Society of America, 86(2), 716−738.
[11] Kuc, R., 1984, Estimating acoustic attenuation from reflected ultrasound signals: comparison of spectral-shift and spectral-difference approaches: IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(1), 1−6.
[12] Leblanc, L. R., Panda, S., and Schock, S. G.,1992,Sonar attenuation modeling for classification of marine sediments: The Journal of the Acoustical Society of America, 91(1),116−126.
[13] Li, Z. L., and Zhang, R. H., 2004, A broadband geoacoustic inversion scheme: Chinese Physics Letters, 21(6), 1100−1103.
[14] Miller, J. H., Bartek, L. R., Potty, G. R., et al, 2004, Sediments in the East China sea: IEEE Journal of Oceanic Engineering, 29(4), 940−951.
[15] Schock, S. G.,2004, A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data: IEEE Journal of Oceanic Engineering, 29(4), 1200−1217.
[16] Stoll, R. D., and Kan, T. K., 1981, Reflection of acoustic waves at a water-sediment interface: The Journal of the Acoustical Society of America, 70(1), 149−156.
[17] Tarif, P., and Bourbie, T., 1987, Experimental comparison between spectral ratio and rise time techniques for attenuation measurement: Geophysical Prospecting, 35(6), 668−680.
[18] Theuillon, G., Stéphan, Y., and Pacault, A., 2008, High-resolution geoacoustic characterization of the seafloor using a subbottom profiler in the Gulf of Lion: IEEE Journal of Oceanic Engineering, 33(3), 240−254.
[19] Turgut, A., and Yamamoto, T., 1990, Measurements of acoustic wave velocities and attenuation in marine sediments: The Journal of the Acoustical Society of America, 87(6), 2376−2383.
[20] Wang, D., Zhang, H. L., and Wang, X. M., 2006, A numerical study of acoustic wave propagation in partially saturated poroelastic rock: Chinese Journal of Geophysics, 49(2),524−532.
[21] Williams, K. L., 2001, An effective density fluid model for acoustic propagation in sediments derived from Biot theory: The Journal of the Acoustical Society of America, 110(5), 2276−2281.
[22] Williams, K. L., Jackson, D. R., Thorsos, E. I., et al., 2002,Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media: IEEE Journal of Oceanic Engineering, 27(3), 413−428.
[23] Yamamoto, T., Trevorrow, M. V., Badiey, M., Turgut, A., 1989, Determination of the seabed porosity and shear modulus profiles using a gravity wave inversion: Geophysical Journal International, 98(1), 173−182.
[24] Yang, K. D., and Ma, Y. L., 2009, A geoacoustic inversion method based on bottom reflection signals: Acta Physica Sinica, 58(3), 1798−1805.
[25] Yu, S. Q.,Huang, Y. W., and Qu, Q., 2014, Bottom parameters inversion based on reflection model of effective density fluid approximation: ACTA ACUSTICA, 39(4), 417−427.
[26] Zhang, H. X.,and He, B. S. 2015, Propagation and attenuation of P-waves in patchy saturated porous media: Applied Geophysics, 12(3), 401−408.
[27] Zhu, Z. Y.,Wang, D.,Zhou, J. P.,and Wang, X. M., 2012, Acoustic wave dispersion and attenuation in marine sediment based on partially gas-saturated Biot-Stoll model: Chinese Journal of Geophysics , 55(1), 180−188.
[1] 李长征,杨勇,王锐,郑军. 利用机械取样和浅地层剖面数据反演河底泥沙参数[J]. 应用地球物理, 2017, 14(2): 225-235.
[2] 阎守国,谢馥励,李长征,张碧星. 含有孔隙层的地表分层模型中瑞利波频散特性研究[J]. 应用地球物理, 2016, 13(2): 332-342.
[3] 张兴岩, 潘冬明, 史文英, 方中于, 但志伟, 张立霞. 基于粗糙海面反射系数求取的τ-p域拖缆鬼波压制技术[J]. 应用地球物理, 2015, 12(4): 573-584.
[4] 张会星, 何兵寿. 部分饱和孔隙介质中的纵波方程及衰减特性研究[J]. 应用地球物理, 2015, 12(3): 401-408.
[5] 冯飞, 王德利, 朱恒, 程浩. 三维曲波变换L1范数约束稀疏反演一次波估计方法研究[J]. 应用地球物理, 2013, 10(2): 201-209.
[6] 王璞, 胡天跃. 转换波AVO近似及其在PP/PS联合反演中的应用[J]. 应用地球物理, 2011, 8(3): 189-196.
[7] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 6(1): 57-65.
[8] 田迎春, 马坚伟, 杨慧珠. 含两种不相混流体的饱和孔隙介质的波场模拟[J]. 应用地球物理, 2010, 7(1): 57-65.
[9] 牛滨华, 孙春岩, 闫国英, 杨维, 刘畅. 含气介质临界点、流体和骨架弹性参数的线性数值计算方法[J]. 应用地球物理, 2009, 6(4): 319-326.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司