APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (1): 46-56    DOI: 10.1007/s11770-018-0664-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
地震物理模拟中Q值测量方法
高峰1,2,魏建新1,2,狄帮让1,2
1.油气资源与探测国家重点实验室,中国石油大学(北京),北京 102249
2.CNPC物探重点实验室,中国石油大学(北京),北京 102249
Seismic physical modeling and quality factor
Gao Feng1,2, Wei Jian-Xin1,2, and Di Bang-Rang1,2
1. State Key Laboratory of Petroleum Resources and Prospecting (China University of Petroleum, Beijing), Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Exploration (China University of Petroleum, Beijing), Beijing 102249, China.
 全文: PDF (1082 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 准确的Q值参数是地震衰减相关研究的基础,而如何准确地获得Q值一直是地震衰减研究中的一个难点。本文针对地震物理模拟中不同Q值测量方法求取Q值存在较大差异的问题,通过标准样品实验和地震物理模型实验,分析了不同Q值测量方法的影响因素、稳定性和测量精度;并针对脉冲透射法测量精度差的问题提出了改良方法,即选择与测试样品声学特性相近的样品作为参考样品;讨论了各种测量方法应用于Q值定量分析研究的可行性。实验研究发现,利用脉冲透射法求取样品Q值时会受到较强的衍射效应影响,衍射效应引起的误差最高可达50%以上,而改良后的脉冲透射法(有机玻璃为参考样品)测量结果的相对误差保持在10%左右。通过对数据进行理论方法衍射校正及实验方法的改良,能够保障不同测量方法测量结果之间的差异保持在10%以内,从而实现利用地震物理模拟进行Q值定量分析的相关研究。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地震物理模拟   Q值测量方法   衍射效应   测量精度     
Abstract: Accurate Q parameter is hard to be obtained, but there is  great difference between Q measurements from different measurement methods in seismic physical modelling. The influence factors, stability and accuracy of different methods are analyzed through standard sample experiment and the seismic physical modelling. Based on this, we  proposed an improved method for improving accuracy of pulse transmission method, in which the samples with similar acoustic properties to the test sample are selected as the reference samples. We assess the stability and accuracy of the pulse transmission, pulse transmission insertion, and reflection wave methods for obtaining the quality factor Q using standard and reference samples and seismic physical modeling. The results suggest that the Q-values obtained by the pulse transmission method are strongly affected by diffraction and the error is 50% or greater, whereas the relative error of the improved pulse transmission method is about 10%. By using a theoretical diffraction correction method and the improved measurement method, the differences among the Q-measuring methods can be limited to within 10%.
Key wordsSeismic physical modeling   Q-value   diffraction effect   
收稿日期: 2017-07-28;
基金资助:

本项目由基金项目(编号:2017ZX05005-004)和基金项目(编号:41474112)联合资助。

引用本文:   
. 地震物理模拟中Q值测量方法[J]. 应用地球物理, 2018, 15(1): 46-56.
. Seismic physical modeling and quality factor[J]. APPLIED GEOPHYSICS, 2018, 15(1): 46-56.
 
[1] Bass, R., 1958, Diffraction Effects in the Ultrasonic Field of a Piston Source: Journal of the Acoustical Society of America, 30(7), 602−605.
[2] Bath, M., 1974, Spectral Analysis in Geophysics: New York: Elsevier. 25−73.
[3] Best, A. I., Sothcott J., Mccann C., 2007, A laboratory study of seismic velocity and attenuation anisotropy in near-surface sedimentary rocks: Geophysical Prospecting, 55(5), 609−625.
[4] Breazeale, M. A., Cantrell, J. H., Heyman, J S., 1981, Ultrasonic Wave Velocity and Attenuation Measurements: Methods of Experimental Physics, 19(08), 67−135.
[5] Chen, S.Q., Li, X.Y., and Wang, S.X., 2012 The analysis of frequency-dependent characteristics for fluid detection: a physical model experiment: Applied Geophysics, 9(2), 121−122.
[6] Ekanem, A. M., Wei, J. X., Li, X. Y., et al., 2013, P−wave attenuation anisotropy in fractured media: A seismic physical modelling study: Geophysical Prospecting, 61(s1), 420−433.
[7] He, T., Zou, C.C., Pei, F. G., Ren, K.Y., Kong F.D., and Shi G., 2010, Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones: Applied Geophysics, 07(2), 114−126.
[8] Mccann, C., and Sothcott, J., 1992, Laboratory measurements of the seismic properties of sedimentary rocks: Geological Society of London, 65(1), 285−297.
[9] Papadakis, E. P., 1966, Ultrasonic Diffraction Loss and Phase Change in Anisotropic Materials: Journal of the Acoustical Society of America, 40(4), 863−876.
[10] Papadakis, E. P., 1968, Buffer-Rod System for Ultrasonic Attenuation Measurements: Journal of the Acoustical Society of America, 44(5), 1437−1441.
[11] Papadakis, E. P., 1972, Ultrasonic Diffraction Loss and Phase Change for Broad-Band Pulses: Journal of the Acoustical Society of America, 52(3), 847−849.
[12] Papadakis, E. P., Fowler, K. A., and Lynnworth, L. C., 1973, Ultrasonic attenuation by spectrum analysis of pulses in buffer rods: Method and diffraction corrections: Journal of the Acoustical Society of America, 53(5), 1336−1343.
[13] Schreiber, E., Anderson, O. L., Soga, N., et al., 1975, Elastic Constants and Their Measurement: Journal of Applied Mechanics, 42(3), 747−748.
[14] Seki, H., Granato, A., Truell, R., 1956, Diffraction Effects in the Ultrasonic Field of a Piston Source and Their Importance in the Accurate Measurement of Attenuation: Journal of the Acoustical Society of America, 28(2), 230−238.
[15] Tang, X. M., Toksöz, M. N., Cheng, C. H. ,1990, Elastic wave radiation and diffraction of a piston source: Journal of the Acoustical Society of America, 87(5), 1894−1902.
[16] Toksöz, M. N., Johnston, D. H., Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics, 44(4), 681−690.
[17] Wei, J. X., and Di, B. R., 2006, Properties of materials forming the 3-D geological model in seismic physical model: Geophysical Prospecting for Petroleum, 45(6), 586−590.
[18] Winkler, K. W., and Plona T. J., 1982, Technique for measuring ultrasonic velocity and attenuation spectra in rocks under pressure: Journal of Geophysical Research Atmospheres, 87(B13), 10776−10780.
[19] Xing, G., Yang, P., and He, L., 2013, Estimation of diffraction effect in ultrasonic attenuation by through−transmission substitution technique: Ultrasonics, 53(4), 825−830.
[20] Xu, W., and Kaufman, J. J., 1993, Diffraction correction methods for insertion ultrasound attenuation estimation: IEEE Transactions on Biomedical Engineering, 40(6), 563−570.
[21] Zemanek, J., and Rudnick I., 1961, Attenuation and Dispersion of Elastic Waves in a Cylindrical Bar: Journal of the Acoustical Society of America, 33(10), 1283−1288.
[22] Zhu, W., and Shan, R., 2016, Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis: Applied Geophysics, 13(2), 375−381.
[1] 吴满生, 狄帮让, 魏建新, 梁向豪, 周翼, 刘依谋, 孔昭举. 大型复杂构造地震物理模型设计制作及实验精度分析[J]. 应用地球物理, 2014, 11(2): 245-251.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司