APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2018, Vol. 15 Issue (1): 69-77    DOI: 10.1007/s11770-018-0654-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移
武绍江1,2,王一博2,马玥3,常旭2
1. 中国科学院地质与地球物理研究所中国科学院页岩气与地质工程重点实验室,北京 100029
2.中国科学院大学,北京 100049
3. 沙特阿美北京研究中心,北京 100102
Super-resolution least-squares prestack Kirchhoff depth migration using the L0-norm
Wu Shao-Jiang1,2, Wang Yi-Bo1, Ma Yue3, and Chang Xu2
1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
2. University of the Chinese Academy of Sciences Beijing, 100049, China.
3. Beijing Research Center, Aramco China, Beijing 100102, China.
 全文: PDF (954 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 最小二乘偏移通过最小化观测地震数据与地下反射率模型的反向传播数据残差来揭示地下介质的岩性和构造,相比常规成像方法具有更好的保幅性和空间分辨率。引入正则化约束项可以有效提高最小二乘偏移的稳定性。常用的正则化项基于二范数,其在提供稳定性的同时使偏移结果变得“光滑”。然而在勘探地球物理中,基于速度和密度的地下反射结构在深度方向一般为不连续存在,表现为较稀疏的反射率值。因此,本研究通过引入基于L0范数的稀疏约束正则化项,并应用基于迭代软阈值和迭代硬阈值混合算法进行求解,以获取超高分辨率稀疏的反射率值。我们使用复杂的数值模型进行测试,并研究其在不同子波主频和噪音强度下的适应性。结果显示,相比于基于L2范数和L1范数约束的正则化项,基于L0范数约束的最小二乘偏移可以有效提高反演结果的稀疏度,获得接近理论“脉冲”型的反射率轴;在不同子波主频和噪音强度下,均具有较高的稳定性和有效性。本方法也可以进一步用于地下结构的解释工作。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词最小二乘深度偏移   高分辨率   稀疏约束   L0范数     
Abstract: Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.
Key wordssuper-resolution   least-squares   Kirchhoff depth migration   L0-norm   regularization   
收稿日期: 2017-07-09;
基金资助:

本研究由国家自然科学基金优秀青年基金项目(编号:41422403)资助。

引用本文:   
. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
. Super-resolution least-squares prestack Kirchhoff depth migration using the L0-norm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 69-77.
 
[1] Aldawood, A., Hoteit, I., and Alkhalifah, T., 2014, The possibilities of compressed-sensing-based Kirchhoff prestack migration: Geophysics, 79(3), 113−120.
[2] Anagaw, A.Y., and Sacchi, M. D., 2012, Edge-preserving seismic imaging using the total variation method: Journal of Geophysics and Engineering, 9, 138−146.
[3] Aoki, N., and Schuster, G. T., 2009, Fast least-squares migration with a deblurring filter: Geophysics, 74(6), 83−93.
[4] Blumensath, T., and Davies, M. E., 2008, Iterative Thresholding for Sparse Approximations: Journal of Fourier Analysis and Applications, 14(5), 629−654.
[5] Claerbout, J. F., 1992, Earth soundings analysis: processing versus inversion: Blackwell Scientific Publications, Cambridge.
[6] Chen, G. X., Chen, S. C., et al., 2013, Geophysical data sparse reconstruction via L0-norm minimization: Applied geophysics, 2013, 10(2), 181−190.
[7] Dai,W., Wang, X., Schuster, G. T., et al., 2011, Least-squares migration of multisource data with a deblurring filter: Geophysics, 76(5), 135−146.
[8] Dai, W., Fowler, P. J., Schuster, G. T., et al., 2012, Multisource least squares reverse time migration: Geophysical Prospecting, 60(4), 681−695.
[9] Daubechies, I., Defrise, M., and De Mol, C., 2003, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure & Applied Mathematics, 57(11), 1413−1457.
[10] Fan, J. W., Li, Z. C., Zhang, K., et al., 2016, Multisource least-squares reverse-time migration with structure oriented filtering: Applied Geophysics, 13(3), 491−499.
[11] Kuehl, H., and Sacchi, M. D., 2003, Least-squares wave-equation migration for Avp/Ava inversion: Geophysics, 68(1), 262−273.
[12] Li, C., Huang, J. P., Li, Z. C., et al., 2017, Preconditioned prestack plane-wave least squares reverse time migration with singular spectrum constraint: Applied Geophysics, 14(1), 73−86.
[13] Liu, G. C., Chen, X. H., Song, J. Y., and Rui, Z. H., 2012, A stabilized least-squares imaging condition with a structure constraint: Applied Geophysics, 9(4), 459−467.
[14] Liu, Y., Teng, J., Xu, T., et al., 2016, An efficient step-length formula for correlative least-squares reverse time migration: Geophysics , 81(4), 221−238.
[15] Liu, Y., Teng, J., Xu, T., et al., 2017, Effects of conjugate gradient methods and step-length formulas on the multiscale full waveform inversion in time domain: Numerical experiments: Pure and Applied Geophysics, 174(5), 1983−2006.
[16] Ma, Y., Luo, Y., and Kelamis, P. G., 2013, Turning noise into signal - use of internal multiples for reflectivity reconstruction: 75th EAGE Conference & Exhibition Incorporating SPE, EUROPEC.
[17] Ma, Y., Zhu, W, Luo, Y., et al., 2015, Super-resolution stacking based on compressive sensing: 85th Annual International Meeting, SEG, Expanded Abstracts, 3502−3506.
[18] Nemeth, T., Wu, C., and Schuster, G. T., 1999, Least-squares migration of incomplete reflection data: Geophysics, 64(1), 208−221.
[19] Nocedal, J., and Wright, S. J., 2006, Numerical optimization: Springer, New York.
[20] Perez, D. O., Velis, D. R., Sacchi, M. D., et al., 2013, High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy: Geophysics, 78(5), 185−195.
[21] Sacchi, M. D., Constantinescu, C. M., and Feng, J., 2003, Enhancing resolution via nonquadratic regularization—Next generation of imaging algorithms: Annual Convention, Canadian Society of Exploration Geophysicists, Abstracts on CDROM, January.
[22] Schuster, G. T., 1993, Least-squares cross-well migration: 63rd Annual International Meeting, SEG, Expanded Abstracts, 110−113.
[23] Tang, Y., 2009, Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian: Geophysics, 74(6), 95−07.
[24] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259−1266.
[25] Tikhonov, A. N., and Arsenin, V. Y., 1977, Solutions of ill-posed problems: Mathematics of Computation, 32(144), 491−491.
[26] Wang, J., and Sacchi, M., 2007, High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints: Geophysics, 72(1), 11−18.
[27] Wang, Y., Yang, C., and Duan, Q., 2009, On iterative regularization methods for migration deconvolution and inversion in seismic imaging: Chinese Journal of Geophysics, 52(6), 1615−1624.
[28] Wu, S., Wang, Y., Zheng, Y., and Chang, X., 2015, Limited-memory BFGS based least-squares pre-stack Kirchhoff depth migration: Geophysical Journal International, 202(2), 738−747.
[29] Yu, S., 1993, High-resolution seismic survey: Petroleum Industry Press, China.
[30] Zheng, Y., Wang, Y., and Chang, X., 2013, Wave-equation traveltime inversion: Comparison of three numerical optimization methods: Computers & Geosciences, 60(10), 88−97.
[1] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[2] 宋建国, 宫云良, 李珊. 斜缆数据频率域高分辨率Radon变换与虚反射消除方法[J]. 应用地球物理, 2015, 12(4): 564-572.
[3] 张军华, 张彬彬, 张在金, 梁鸿贤, 葛大明. 地震低频信息缺失特征分析及拓频方法研究[J]. 应用地球物理, 2015, 12(2): 212-220.
[4] 孙学凯, 孙赞东, 谢会文. 非稳态地震稀疏约束反褶积研究[J]. 应用地球物理, 2014, 11(4): 459-467.
[5] 李志娜, 李振春, 王鹏, 徐强. λ-f域高分辨率Radon变换多次波压制方法研究[J]. 应用地球物理, 2013, 10(4): 433-441.
[6] 王汉闯, 陈生昌, 张博, 佘德平. 多震源混合地震数据分离方法[J]. 应用地球物理, 2013, 10(3): 251-264.
[7] 李子顺. 高密度偏移技术原理与应用[J]. 应用地球物理, 2012, 9(3): 286-292.
[8] 李勇, 王绪本, 李志荣, 李琼, 李正文. 高分辨率非线性三维整体反演研究[J]. 应用地球物理, 2009, 6(2): 159-165.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司