APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 65-72    DOI: 10.1007/s11770-012-0315-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维多尺度体曲率的算法及应用
陈学华1,2,杨威3,贺振华1,2,钟文丽4,文晓涛2
1.成都理工大学油气藏地质及开发工程国家重点实验室,成都 610059 ;
2.成都理工大学地球物理学院,成都 610059;
3.中国石油化工股份有限公司西北油田分公司勘探开发研究院,乌鲁木齐 830011;
4.成都理工大学地球科学学院,成都 610059
The algorithm of 3D multi-scale volumetric curvature and its application*
Chen Xue-Hua1, 2, Yang Wei3, He Zhen-Hua1, 2, Zhong Wen-Li4, and Wen Xiao-Tao2
1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China.
2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China.
3. Research Institute of Exploration and Development, Northwest Oilfi eld Company, Sinopec, Urumqi, 830011, China.
4. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (1073 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了充分提取与挖掘储层结构及构造信息在时间(深度)和空间上的多尺度特征,构造了一种新的三维多尺度体曲率分析方法,并给出了三维体曲率快速提取算法。与常规的体曲率方法相比,本文方法的改进主要体现在以下两个方面:① 在体曲率分析中引入时频域分频展开和对应的空间波数域多尺度自适应微分算子,可同时在时间和空间上反映地震信息的多尺度特征;② 将不同尺度的体曲率数据进行有机融合,充分利用了不同尺度曲率异常信息,同时突出有效异常,降低噪声影响,为体曲率属性解释奠定基础。利用该方法处理了陆上和海上三维地震资料,实现了对储层展布、断层及裂缝发育带的检测及多尺度特征的有效刻画。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈学华
杨威
贺振华
钟文丽
文晓涛
关键词三维多尺度体曲率   波数域自适应微分算子   时频域分频展开   断层检测   裂缝发育带   数据融合     
Abstract: To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
Key words3D multi-scale volumetric curvature   adaptive differential operator in wavenumber domain   multi-frequency expansion in time-frequency domain   fault detection   fracture zone   data fusion   
收稿日期: 2011-10-12;
基金资助:

国家自然科学基金项目(41004054),高等学校博士学科点专项科研基金项目(20105122120002),四川省教育厅自然科学重点项目(092A011)资助。

引用本文:   
陈学华,杨威,贺振华等. 三维多尺度体曲率的算法及应用[J]. 应用地球物理, 2012, 9(1): 65-72.
CHEN Xue-Hua,YANG Wei,HE Zhen-Hua et al. The algorithm of 3D multi-scale volumetric curvature and its application*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 65-72.
 
[1] Al-Dossary, S., and Marfurt, K. J., 2006, 3D volumetric multispectral estimates of reflector curvature and
[2] rotation: Geophysics, 71(5), P41 - P51.
[3] Barnes, A. E., 1996, Theory of 2-D complex seismic trace analysis: Geophysics, 61(1), 264 - 272.
[4] Bergbauer, S., Mukerji, T., and Hennings, P., 2003, Improving curvature analyses of deformed horizons using
[5] scale-dependent filtering techniques: AAPG Bulletin, 87(8), 1255 - 1272.
[6] Blumentritt, C. H., Marfurt, K. J., and Sullivan, E. C., 2006, Volume-based curvature computations illuminate fracture
[7] orientations - Early to mid-Paleozoic, Central Basin Platform, west Texas: Geophysics, 71(5), P41 - P51.
[8] Buck, D. M., Alam, A., and Taylor, J. D., 2007, Fractured reservoir prediction from 3D seismic volumetric curvature
[9] and low frequency imaging: 77th Annual Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 422 -
[10] 426.
[11] Chopra, S., and Marfurt, K. J., 2007, Curvature attribute applications to 3D surface seismic data: The Leading
[12] Edge, 26(4), 404 - 414.
[13] Chopra, S., and Marfurt, K. J., 2007, Volumetric curvature attributes add value to 3D seismic data interpretation:
[14] The Leading Edge, 26(7), 856 - 867.
[15] Chopra, S., and Marfurt, K. J., 2007, Seismic attributes for prospect identification and reservoir characterization:
[16] Society of Exploration Geophysicists, Tulsa, USA.
[17] Chopra, S., and Marfurt, K. J., 2008, Emerging and future trends in seismic attributes: The Leading Edge, 27(3), 298 - 318.
[18] Claerbout, J. F., 1976, Fundamentals of Geophysical Data Processing: McGraw-Hill Book Company, New York,
[19] USA.
[20] Flierman, W., Weide, J. G., Wever, A., Brouwer, F., and Huck, A., 2008, Use of spatial, frequency and curvature
[21] attributes for reservoir, fl uid and contact predictions: 78th Annual Meeting, Society of Exploration Geophysicists,
[22] Expanded Abstracts, 1521 - 1525.
[23] Gersztenkorn, A., and Marfurt, K. J., 1999, Eigenstructurebased coherence computations as an aid to 3-D structural
[24] and stratigraphic mapping: Geophysics, 64(5), 1468 - 1479.
[25] Hart, B. S., 2002, Validating seismic attributes: Beyondstatistics: The Leading Edge, 21(10), 1016 - 1021.
[26] He, Z. H., Huang, H. D., Hu, G. M., Wang, C. X., and Huang, D. J., 1999, Lateral identification by seismic multi-scale
[27] edge detection: Computing Techniques for Geophysical and Geochemical Exploration, 21(4), 289 - 294.
[28] Klein, P., Richard, L., and James, H., 2008, 3D curvature attributes: a new approach for seismic interpretation:
[29] First Break, 26, 105 - 112.
[30] Lisle, R. J., 1994, Detection of zones of abnormal strains in structures using Gaussian curvature analysis: AAPG
[31] Bulletin, 78(12), 1811 - 1819.
[32] Luo, Y., Higgs, W. G., and Kowalik, W. S., 1996, Edge detection and stratigraphic analysis using 3D seismic
[33] data: 66th SEG Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 324 - 327.
[34] Mallat, S., 2002, A Wavelet tour of signal processing (Second Edition): China Machine Press, Beijing, China.
[35] Marfurt, K. J., 2006, Robust estimates of 3D refl ector dip and azimuth: Geophysics, 71(4), P29 - P40.
[36] Marfurt, K. J., Kirlin, R. L., and Farmer, S. L., 1998, 3-D seismic attributes using a semblance-based coherency
[37] algorithm: Geophysics, 63(4), 1150 - 1165.
[38] Marfurt, K. J., Sudhaker, V., Gersztenkorn, A., Crawford, K. D., and Nissen, S. E., 1999, Coherency calculations in the
[39] presence of structural dip: Geophysics, 64(1), 104 - 111.
[40] Roberts, A., 2001, Curvature attributes and their application to 3D interpreted horizons: First Break, 19(2), 85 - 100.
[41] Wang, X. W., Yang, K. Q., Zhou, L. H., Wang, J., Liu, H., and Li, Y. M., 2002, Methods of calculating coherence
[42] cube on the basis of wavelet transform: Chinese Journal of Geophysics, 45(6), 847 - 852.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司