APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 606-619    DOI: 10.1007/s11770-017-0649-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
基于平移不变量小波的全张量重力梯度数据滤波
张代磊1,黄大年1,于平1,袁园2,3
1. 吉林大学地球探测科学与技术学院,长春130026
2. 国家海洋局第二海洋研究所,杭州310012
3. 国家海洋局海底科学重点实验室,杭州310012
Translation-invariant wavelet denoising of full-tensor gravity –gradiometer data
Zhang Dai-Lei1, Huang Da-Nian1, Yu Ping1, and Yuan Yuan2,3
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. The Second Institute of Oceanography, the State Oceanic Administration, Hangzhou 310012, China.
3. Key Laboratory of Submarine Geoscience, the State Oceanic Administration, Hangzhou 310012, China.
 全文: PDF (1783 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 全张量重力梯度(FTG)数据包含大量场源体的细节信息,其滤波处理对异常的反演和解释结果有重要影响,本文提出一种基于平移不变量小波的自适应混合阈值滤波方法,可有效压制随机噪声并保留数据细节信息。建立了新的混合阈值法,根据信号和随机噪声所对应小波系数的能量分布进行滤波。平移不变量小波能有效压制伪吉布斯现象,混合阈值方法相对传统阈值能得到更好的信噪小波系数的分离,同时,根据每个分解尺度上小波系数的统计特性,使用自适应贝叶斯阈值进行小波系数的处理。此外,应用二维离散小波变换直接处理网格数据,可以提高计算效率。模型数据和实测数据处理的结果表明,相对高斯滤波器,本文所提出的方法不仅能有效去除高斯白噪声,还能更好地保留FTG数据的高频细节信息,具有良好的实际应用前景。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词全张量重力梯度   滤波   自适应贝叶斯阈值   混合阈值方法   平移不变量小波     
Abstract: Denoising of full-tensor gravity-gradiometer data involves detailed information from field sources, especially the data mixed with high-frequency random noise. We present a denoising method based on the translation-invariant wavelet with mixed thresholding and adaptive threshold to remove the random noise and retain the data details. The novel mixed thresholding approach is devised to filter the random noise based on the energy distribution of the wavelet coefficients corresponding to the signal and random noise. The translation-invariant wavelet suppresses pseudo-Gibbs phenomena, and the mixed thresholding better separates the wavelet coefficients than traditional thresholding. Adaptive Bayesian threshold is used to process the wavelet coefficients according to the specific characteristics of the wavelet coefficients at each decomposition scale. A two-dimensional discrete wavelet transform is used to denoise gridded data for better computational efficiency. The results of denoising model and real data suggest that compared with Gaussian regional filter, the proposed method suppresses the white Gaussian noise and preserves the high-frequency information in gravity-gradiometer data. Satisfactory denoising is achieved with the translation-invariant wavelet.
Key wordstensor   gravity gradiometry   denoising   threshold   translation-invariant wavelet   
收稿日期: 2017-05-19;
基金资助:

本研究由国家重点研发计划课题(编号:2017YFC0602203和2017YFC0601606)、国家科技重大专项(编号:2016ZX05027-002-003)、国家自然科学基金项目(编号:41604089和41404089)、国家自然科学基金重点项目(编号:414030322)、科技部重大仪器专项“海洋—航空重力仪研制”(编号:2011YQ12004505)、同济大学海洋地质国家重点实验室(编号:MGK1610)和国家海洋局第二海洋学研究所基础科学研究特种基金项目(编号:14275-10)。

引用本文:   
. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
. Translation-invariant wavelet denoising of full-tensor gravity –gradiometer data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 606-619.
 
[1] Barnes, G., and Lumley, J., 2010, Noise analysis and reduction in full tensor gravity gradiometry data: Airborne Gravity, 21?27.
[2] Barnes, G., and Lumley, J., 2011, Processing gravity gradient data: Geophysics, 76(2), I33?I47.
[3] Boschetti, F., Hornby, P., and Horowitz, F. G., 2001, Wavelet based inversion of gravity data: Exploration Geophysics, 32(1), 48?55.
[4] Chang, S. G., Yu, B., and Vetterli, M., 2000, Adaptive wavelet thresholding for image denoising and compression: IEEE Transactions on Image Processing, 9(9), 1532?1546.
[5] Coifman, R. R., and Donoho, D. L., 1995, Translation-invariant de-noising: Wavelets and Statistics, chapter, New York: Springer-Verlag, 103, 125-150.
[6] Di Francesco, D., 2013, The coming age of gravity gradiometry: 23rd International Geophysical Conference and Exhibition, SEG, Expended Abstracts, 1?4.
[7] Dransfield, M. H., and Chrisenten, A. N., 2013, Performance of airborne gravity gradiometers: The Leading Edge: Gravity and Potential Fields, 32(8), 908?922.
[8] Donoho, D. L., 1995, De-noising by soft-thresholding: IEEE Transactions on Information Theory, 41(3), 613?627.
[9] Donoho, D. L., and Johnstone, I. M., 1994, Adapting to unknown smoothness via wavelet shrinkage: J. Am. Statist. Assoc., 90, 1200?1224.
[10] Donoho, D. L., and Johnstone, I. M., 1994, Ideal spatial adaptation by wavelet shrinkage: Biometrika, 81(3), 425-455.
[11] Fedi, M., Lenarduzzi, L., Primiceri, R., and Quarta, T., 2000, Localized denoising filtering using wavelet transform: Pure and Applied Geophysics, 157, 1463?1491.
[12] Fitzgerald, D., Argast, D., and Holstein, H., 2009, Further development with full tensor gradiometry datasets: ASEG, Extended Abstracts, Perth, Australia, 1-7.
[13] Forsberg, R., 1984, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling: Report 355, Department of Geodetic Science and Surveying, Ohio State University.
[14] Ismail B., and Khan A., 2012, Image denoising with a new threshold value using wavelets: Journal of Data Science, 10, 259?270.
[15] Lee, J. B., 2001, FALCON gravity gradiometer technology: Exploration Geophysics, 32(3, 4), 247?250.
[16] Li, X., and Chouteau, M., 1998, Three-dimensional gravity modelling in all space: Survey in Geophysics, 19(4), 339?368.
[17] Li, Y. G., 2001, Processing gravity gradiometer data using an equivalent source technique: 71st Annual international meeting, SEG, Expanded Abstract, 1466?1469.
[18] Liang, J. W., 2001, A physical interpretation of wavelet analysis for potential fields: Chinese journal of Geophysics, 44(6), 865?870.
[19] Lyrio, J. C. S., Tenorio, L., and Li, Y. G., 2004, Efficient automatic denoising of gravity gradiometry data: Geophysics, 69(3), 772?782.
[20] Mallat, S. G., 1989, A theory for multi-resolution signal decomposition: the wavelet representation: IEEE transactions on pattern analysis and machine intelligence, 11(7), 674?693.
[21] Mallat, S. G., 1999, A wavelet tour of signal processing, Second Edition, San Diego, Academic Press.
[22] Pan, Q., Meng, J. L., Zhang, L., Cheng, Y. M., and Zhang, H. C., 2007, Wavelet filtering method and its application: Journal of Electronics & Information Technology, 29(1), 236?242.
[23] Pajot, G., de Viron, O., Diament, M., Lequentrec-Lalancette, M. F., and Mikhailov, V., 2008, Noise reduction through joint processing of gravity and gravity gradient data: Geophysics, 73(3), I23?I34.
[24] Pilkington, M., and Shamsipour, P., 2014, Noise reduction procedures for gravity-gradiometer data: Geophysics, 79(5), G69?G78.
[25] Sanchez, V., Sinex, D., Li, Y. G., Nabighian, M., Wright, D., and Smith, D., 2005, Processing and inversion of magnetic gradient tensor data for UXO applications: 18th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, 1193?1202.
[26] Singh, B. N., and Tiwari, A. K., 2006, Optimal selection of wavelet basis function applied to ECG signal denoising: Digital Signal Processing, 16, 275?287.
[27] Sun, T. Y., Liu, C.C., Hsieh, T. S., Tsai, T. Y., and Jheng, H. J., 2008, Optimal determination of wavelet threshold and decomposition level via heuristic learning for noise reduction: IEEE Conference on Soft Computing in Industrial Applications (SMCia/08), Muroran, Japan, 405?410.
[28] Oliveira, V. C., and Barbosa, V. C. F., 2013, 3-D radial gravity gradient inversion: Geophysical Journal International, 195, 883?902.
[29] Yuan, Y., Huang, D. N., Yu, Q. L., and Geng, M. X., 2013, Noise filtering of full-gravity gradient tensor data: Applied Geophysics, 10(3), 241?250.
[1] 闫建平,何旭,胡钦红,梁强,唐洪明,冯春珍,耿斌. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
[2] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[3] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[4] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[5] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[6] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[7] 王泰涵,黄大年,马国庆,孟兆海,李野. 改进的预处理共轭梯度快速算法在三维重力梯度数据反演中的应用[J]. 应用地球物理, 2017, 14(2): 301-313.
[8] 王德营,凌云. 基于相移和相位滤波的面波压制方法[J]. 应用地球物理, 2016, 13(4): 614-620.
[9] 范景文,李振春,张凯,张敏,刘学通. 基于构造导向滤波的多震源最小二乘逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 491-499.
[10] Seyyed Ali Fa’al Rastegar, Abdolrahim Javaherian, Naser Keshavarz Farajkhah. 利用改进的共偏移距-共反射面(COCRS)叠加压制地滚波?[J]. 应用地球物理, 2016, 13(2): 353-363.
[11] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[12] 蔡涵鹏, 贺振华, 李亚林, 何光明, 邹文, 张洞君, 刘璞. 边界和振幅特性保持的自适应噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 289-300.
[13] 张固澜, 王熙明, 贺振华, 曹俊兴, 李可恩, 容娇君. 零偏移距VSP资料层Q反演及其应用研究[J]. 应用地球物理, 2014, 11(2): 235-244.
[14] 许辉群, 桂志先. 信噪比数据体在标准层分析及断裂检测中的应用探讨[J]. 应用地球物理, 2014, 11(1): 73-79.
[15] 谭玉阳, 何川, 王艳冬, 赵忠. 基于S变换时频域极化滤波的面波压制方法研究[J]. 应用地球物理, 2013, 10(3): 279-294.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司