APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 570-580    DOI: 10.1007/s11770-017-0646-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于灰色系统理论和稳健估计的人工源电磁数据处理
莫丹1,2,蒋奇云1,2,李帝铨1,2,陈超健1,2,张必明1,2,刘嘉文1,2
1. 中南大学 地球科学与信息物理学院,长沙 410083
2. 中南大学 有色金属成矿预测与地质环境监测教育部重点实验室,长沙 410083
Controlled-source electromagnetic data processing based on gray system theory and robust estimation
Mo Dan1,2, Jiang Qi-Yun1,2, Li Di-Quan1,2, Chen Chao-Jian1,2, Zhang Bi-Ming1,2, and Liu Jia-Wen1,2
1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China.
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, China.
 全文: PDF (985 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对强干扰导致人工源频率域电磁法测量结果出现偏倚的问题,研究将灰色系统理论和稳健M-估计综合用于数据处理的新方法。由于灰色系统理论对数据分布类型及数量依赖程度低,本文通过灰色建模求解测量数据的标准差,结合阈值法识别、剔除异常值。采用稳健M-估计估算测量结果,以压制异常值影响,提高处理结果的精度。最后将保留数据的M-估计值视为真实值。为验证所述方法处理效果,仿真生成含噪信号,剔除其有效频率频谱数据中的异常值,处理结果可高度逼近理论值,其最大相对误差为3.6676%,最小仅为0.0251%。然后对野外实测数据进行处理,并通过均方根误差、电位差频谱数据和视电阻率曲线形态对处理效果进行评价。研究结果表明:本文方法可以在保留可信数据的同时有效剔除异常值,均方根误差大幅下降,为人工源电磁法资料后续处理解释提供可靠的数据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘迁迁
魏东平
孙振添
张晓惠
关键词人工源电磁法   灰色系统理论   稳健M-估计   异常值     
Abstract: We propose a novel method that combines gray system theory and robust M-estimation method to suppress the interference in controlled-source electromagnetic data. We estimate the standard deviation of the data using a gray model because of the weak dependence of the gray system on data distribution and size. We combine the proposed and threshold method to identify and eliminate outliers. Robust M-estimation is applied to suppress the effect of the outliers and improve the accuracy. We treat the M-estimators of the preserved data as the true data. We use our method to reject the outliers in simulated signals containing noise to verify the feasibility of our proposed method. The processed values are observed to be approximate to the expected values with high accuracy. The maximum relative error is 3.6676%, whereas the minimum is 0.0251%. In processing field data, we observe that the proposed method eliminates outliers, minimizes the root-mean-square error, and improves the reliability of controlled-source electromagnetic data in follow-up processing and interpretation.
Key wordsControlled-source electromagnetic method   gray system theory   robust M-estimates   
收稿日期: 2017-05-13;
基金资助:

本研究由国家自然科学基金国家重大科研仪器设备研制专项(编号:41227803)、国家高技术研究发展计划(编号:2014AA06A602)和中南大学中央高校基本科研业务费专项资金(编号:2017zzts557)联合资助。

引用本文:   
刘迁迁,魏东平,孙振添等. 基于灰色系统理论和稳健估计的人工源电磁数据处理[J]. 应用地球物理, 2017, 14(4): 570-580.
LIU Qian-Qian,WEI Dong-Ping,SUN Zhen-Tian et al. Controlled-source electromagnetic data processing based on gray system theory and robust estimation[J]. APPLIED GEOPHYSICS, 2017, 14(4): 570-580.
 
[1] Buselli, G., and Cameron, M., 1996, Robust statistical methods for reducing sferics noise contaminating transient electromagnetic measurements: Geophysics, 61(6), 1633-1646.
[2] Cao, M., Tan, H. D., and Wang, K. P., 2016, 3DLBFGS inversion of controlled source extremely low frequency electromagnetic data: Applied Geophysics, 13(4), 689-700.
[3] Deng, J. L., 1993, Gray control system: Huazhong University of Science and Technology Press, Wuhan.
[4] Egbert, G. D., and Booker, J. R., 1986, Robust estimation of geomagnetic transfer functions: Geophysical Journal International, 87(1), 173-194.
[5] Fisher, R. A., 1950, On the mathematical foundations of theoretical static: Jone Wiley& Sons, New York.
[6] Grayver, A. V., and Streich, R., Ritter, O., 2014, 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation: Geophysics, 79(2), E101-E114.
[7] He, J. S., 2010, Wide field electromagnetic sounding methods: Journal of Central South University (in Chinese), 41(3), 262-269.
[8] He, J. S., 2010, Wide field electromagnetic sounding methodsand pseudo-random electrical exploration method: Higher Education Press, Beijing.
[9] Holland, P. W., and Welsh, R. E., 1977, Robust regression using iteratively reweighted least-squres: Communications in Statistics-Theory and Methods, 6(9), 813-827.
[10] Huang, Y. P., Geng, J. Y., and Guo, T. L., 2015, New seismic attribute:fractal scaling exponent based on gray detrended fluctuation analysis: Applied Geophysics, 12(3), 343-352.
[11] Huber, P. J., 1964, Robust estimation of a location parameter: The Annals of Mathematical Statistics, 35(1), 73-101.
[12] Huber, P. J., 1981, Robust statistics: John& Sons Press, New York.
[13] Huber, P. J., 2011, Robust statistics: International Encyclopedia of Statistical Science, Springer Berlin Heidelberg, 1248-1251.
[14] Jiang, Q. Y., 2010, Study on the key technology of wide field electromagnetic sounding instrument: PhD Thesis, Central South University, Changsha.
[15] Li, G., Xiong C., Wang, H. Q., et al, 2011, Single-trial estimation of dynamic spectrum: Spectroscopy and Spectral Analysis, 31(7), 1857-1861.
[16] Liu, C., Wang, D., Liu, Y., et al., 2005, Preliminary study of using 2D multilevel median filtering technique to eliminate random noise: Oil Geophysical Prospecting (in Chinese), 40(2), 163-167.
[17] Liu, N., 2015, Preprocessing and Research of denosing methods for marine controlled source electromangnetic data: Msc. Thesis, Jilin University, Jilin.
[18] Liu, W. Q., and Chen, R. J., 2016, Coherence analysis for multi-frequency induced polarization signal processing in strong interference environment: The ChineseJournal of NonferrousMetals (in Chinese), 3, 022.
[19] Liu, W. Q., Chen, R. J., Cai, H., et al., 2016, Robust statistical methods for impulse noise suppressing of spread spectrum induced polarization data, with application to a mine site, Gansu province, China: Journal of Applied Geophysics, 135, 397-407.
[20] Liu, Y., Fomel, S., and Liu, G., 2010, Nonlinear structure-enhancing filtering using plane-wave prediction: Geophysical Prospecting, 58(3), 415-427.
[21] Meng, Q. X., Pan, H. P., and Luo, M., 2015, A study on the discrete image method for calculation of transient electromagnetic fields in geological media: Applied Geophysics, 12(4), 493-502.
[22] Neelamani, R., Baumstein, A. I., Gillard, D. G., et al., 2008, Coherent and random noise attenuation using the curvelet transform: The Leading Edge, 27(2), 240-248.
[23] Prata, D. M., Schwaab, M., Lima, E. L., et al., 2010, Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor: Chemical Engineering Science, 65(17), 4943-4954.
[24] Song, Z. Q., and Tan, C. Q., 1997, The analysis rule process method and its application for exact evaluation of oil-gas reservoirs by using of gray system theory: Systems Engineering-Theory & Practice (in Chinese), 17(3), 75-83.
[25] Streich, R., Becken, M., and Ritter, O., 2013, Robust processing of noisy land-based controlled-source electromagnetic data: Geophysics, 78(5), 237-247.
[26] Wang, D. L., Tong, Z. F., Tang, C., and Zhu, H., 2010, An iterative curvelet thresholding algorithm for seismic random noise attenuation: Applied Geophysics, 7(4), 315-324.
[27] Wang, K., Tan, H. D., and Wang, T., 2017, 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory: Applied Geophysics, 14(2), 279-290.
[28] Wu, G. P., AO, M. S., Wu, Y. Q., et al., 2009, Multi-domain information assessment of oil and gas traps based on cloud model and gray relational analysis: Journal of Southwest Petroleum University, 31(5), 1−5.
[29] Yang, C., 2012, Study on FIR digital technology in wide field electromagnetic effective signal extracting: Msc. Thesis, Central South University, Changsha.
[30] Zhang, B. M., Jiang, Q. Y., Mo, D., and Xiao, L. Y., 2015, A new method for handling gross errors in electromagnetic prospecting data: Chinese J. Geophys (in Chinese), 58(6), 2087-2102.
[31] Zhang, L., and Zhang, X. P., 2011, Eliminating intolerble errors contained in flight rearch data: Journal of Northwestern Polychnical University (in Chinese), 29(4), 637-640.
[32] Zhu, J. M., Hong, Z. B., Wang, Z. Y., and Zhou, F. Z., 2000, A gray evaluation method of measurement result with standard uncertainty: J. Huazhong Univ. of Sci. &Tech. (in Chinese), 28(9), 84-86.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司