APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 559-569    DOI: 10.1007/s11770-017-0643-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
油气藏开发监测中地-井三维电磁法的数值模拟研究
李静和1,何展翔2,徐义贤3
1. 桂林理工大学,广西桂林 541004
2. 中国石油东方地球物理公司,河北涿州 072751
3. 浙江大学,浙江杭州310027
Three-dimensional numerical modeling of surface-to-borehole electromagnetic method for monitoring reservoir
Li Jing-He1, He Zhan-Xiang2, and Xu Yi-Xian3
1. Guilin University of Technology, Guilin 541004, China.
2. BGP Inc. of CNPC, Zhuozhou 072751, China.
3. Zhejiang University, Hangzhou 310027, China.
 全文: PDF (1093 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在油气田开采的中后期,油气藏动态监测与剩余油气的探测是至关重要的问题。基于地层流体含油气饱和度的变化将导致电阻率差异这一机理,提出多场源多方位地-井垂直电磁剖面法。根据油气藏及其开采过程设计了油气藏动态开发四个进程,采用积分方程方法模拟了多方位、多场源地-井垂直电磁剖面法在油气藏注水开采进程中油气储层电阻率和含油饱和度动态变化的电磁响应特征。通过不同方位地-井电磁场异常强度及形态变化来指示注水开采进程。数值模拟结果表明:该方法可有效监测油气动态变化过程,指示剩余油分布、注水水淹进程。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词油气藏开发   多方位监测   地井垂直电磁剖面   三维积分方程模拟     
Abstract: Dynamic exploration for oil and gas requires careful monitoring of reservoir contents for safety and efficiency of oil extraction. This paper proposes a multi-source and multi-azimuth walk-around vertical electromagnetic profiling (MM-VEP) technique for surface-to-borehole electromagnetic surveying. Based on the difference in conductivities between reservoirs with different concentrations of oil and water, MM-VEP can be used to monitor reservoirs as they are injected with water. The MM-VEP response in five azimuth planes is modeled with three-dimensional (3D) integral equation calculations. The progress of waterflooding in four stages for enhanced oil recovery is shown to be indicated by field anomalies MM-VEP caused by variations in the reservoir resistivity. Numerical modeling demonstrates that MM-VEP measurements provides enough quantitative information from an underground reservoir to accurately detect oil deposits and monitor the progress of waterflooding.
Key wordsReservoir detecting   multi-azimuth   MM-VEP   integral equation method   
收稿日期: 2017-03-13;
基金资助:

本研究项目由国家重大专项课题(编号:2011ZX05019-007)、国家自然科学基金(编号:41604097)、国家博士后科学基金(编号:2016M592611)和桂林理工大学科研启动基金(编号:002401003503和002401003514)联合资助。

引用本文:   
. 油气藏开发监测中地-井三维电磁法的数值模拟研究[J]. 应用地球物理, 2017, 14(4): 559-569.
. Three-dimensional numerical modeling of surface-to-borehole electromagnetic method for monitoring reservoir[J]. APPLIED GEOPHYSICS, 2017, 14(4): 559-569.
 
[1] Liu, Y. X., and Zhao, W., 2014, Preliminary experiment of new time-lapse microgravity monitoring technique in T-gas reservoir: 84th Annual International Meeting, SEG, Expanded Abstracts, 1359−1363.
[2] Bai, Z., Tang, M. J., and Zhang, F. L., 2016, Three-dimensional forward modeling and inversion of borehole-to-surface electrical imaging with different power sources: Applied Geophysics, 13(3), 437−448.
[3] Meng, Q. X., Hu, X. Y., Pan,H. P., and Zhou, F., 2017, Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method: Applied Geophysics, 14(1), 175−186.
[4] Böhm, G., Carcione, J. M., and Gei, D., 2015, Cross-well seismic and electromagnetic tomography for CO 2 detection and monitoring in a saline aquifer: Journal of Petroleum Science and Engineering, 133, 245−257.
[5] Shang, X. M., 2014, Static correction in time-lapse seismic data processing. Geophysical & Geochemical Exploration, 38(1), 162−166.
[6] Chung, Y., Son, J. S., and Lee, T. J., 2011, 3D CSEM modeling and inversion algorithms for a surface-to-borehole survey: 81th Annual International Meeting, ,SEG, Expanded Abstracts, 645−649.
[7] Shen, J. S., Wang, Z. G., and Ma, C., 2014, Application of the cross-hole electromagnetic method (CHEM) in hydrocarbon reservoir monitoring: Oil Geophysical Prospecting, 49(1), 213−224.
[8] Colombo, D., and Gary, W. M., 2013, Quantifying surface-reservoir electromagnetics for waterflood monitoring in a Saudi Arabian carbonate reservoir.: Geophysics, 78(6), E281−E297.
[9] Shang, X. M., 2014, Static correction in time-lapse seismic data processing. Geophysical & Geochemical Exploration, 38(1), 162−166.
[10] He, Z. X., Sun, W. B., and Kong, F. X., 2006, Marine electromagnetic approach: Oil Geophysical Prospecting, 41(4), 451−457.
[11] He, Z. X., Hu, W. B., and Dong, W. B., 2010, Petroleum electromagnetic prospecting advances and case studies in China: Surv Geophys., 31, 207−224.
[12] Shi, Y. L., Hu, Z. Z., Huang, W. H., Wei, Q., Zhang, S., Meng,C. x., and Ji, L. X., 2016, The distribution of deep source rocks in the GS Sag: joint MT-gravity modeling and constrained inversion: Applied Geophysics,13(3), 469−479.
[13] He, L., Hu, X., and Xu, L., 2012, Feasibility of monitoring hydraulic fracturing using time-lapse audio-magnetotellurics: Geophysics, 77(4), WB119−WB126.
[14] Sugihara, M., Nawa, K., and Nishi, Y., 2013, Continuous gravity monitoring for CO2 geo-sequestration: Energy Procedia, 37, 4302−4309.
[15] Huang, F., Juhlin, C., and Kempka, T., 2015, Modeling 3D time-lapse seismic response induced by CO 2 by integrating borehole and 3D seismic data-A case study at the Ketzin pilot site, Germany: International Journal of Greenhouse Gas Control, 36, 66−77.
[16] Tang, Q. J., Hang, L. G., and Dou, X. Y., 2010, Simulation based on cross-hole time-lapse seismic record of Random monoclinic media: Journal of Oil and Gas Technology, 32(2), 261−266.
[17] Hursan, G., and Zhdanov, M. S., 2002, Contraction integral equation method in three-dimensional electromagnetic modeling: Radio Sci., 37, 1089.
[18] Tietze, K., Ritter, O., and Veeken, P., 2015, Controlled-source electromagnetic monitoring of reservoir oil saturation using a novel borehole to surface configuration: Geophysical Prospecting, 63(6), 1468−1490.
[19] Hu, Z. Z., He, Z. X., and Li, D. C., 2014, Reservoir monitoring feasibility study with time lapse magnetotelluric survey in Sebei Gas Field: Oil Geophysical Prospecting, 49(5), 997−1005.
[20] Weidelt, P., 1975, EM induction in three-dimensional structures: Geophysics, 41, 85−109.
[21] Li, Z. T., 2005, Three Dimension reservoir electrical resistance tomography technique for residual oil exploration: PhD Thesis, China University of Geosciences (Beijing), Beijing.
[22] Wirianto, M., Mulder, W. A., and Slob, E. C., 2010, A feasibility study of land CSEM reservoir monitoring in a complex 3-D model: Geophysical Journal International, 181(2), 741−755.
[23] Li, J. H., He, Z. X., Lv, Y. Z., and Li, X., 2011, A review of wellhole electromagnetic exploration technology and the status of numerical simulation: Chinese Journal of Engineering Geophysics, 8(3), 303−309.
[24] Young, W. M., and Lumley, D., 2015, Feasibility analysis for time-lapse seafloor gravity monitoring of producing gas fields in the Northern Carnarvon Basin, offshore Australia: Geophysics, 80(2), WA149−WA160.
[25] Li, J. H., 2012, Simulation research of vertical electromagnetic profile of surface to borehole technique- A new way of monitoring rent reservoir: MS Thesis, Guilin University of Technology, Guilin, China.
[26] Li, J. H., and He, Z. X., 2014, Three-dimensional cross-well electromagnetic inversion using the least-square method: Oil Geophysical Prospecting, 49(3), 586−595.
[27] Zhang, J. H., Li, J., Xiao, W., Tang, M. Y., Zhang, Y. Y., Cui, S. L., and Qu, Z. P., 2016, Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor: Applied Geophysics, 13(2), 307−314.
[28] Li, J. H., Jia, Y., Liu, Q. H., and He, Z. X., 2014, A fast solver for vertical electromagnetic profiles of surface to borehole electromagnetic method (SBEM): 84th Annual International Meeting, SEG, Expanded Abstract, 628−632.
[29] Zhang, R. W., Li, H. Q., Zhang, B. J., Huang, H. D., and Wen, P. F., 2015, Detection of gas hydrate sediments using prestack seismic AVA inversion: Applied Geophysics, 12(3), 453−464.
[30] Li, J. H., Song, L. P., and Liu, Q. H., 2016, Multiple frequency contrast source inversion method for vertical electromagnetic profiling: 2D simulation results and analyses: Pure and Applied Geophysics, 173(2), 607−621.
[31] Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems: Elsevier, 627.
[32] Liu, Y. X., and Zhao, W., 2014, Preliminary experiment of new time-lapse microgravity monitoring technique in T-gas reservoir: 84th Annual International Meeting, SEG, Expanded Abstracts, 1359−1363.
[33] Zhdanov, M. S., and Lee, S. K., 2005, Integral equation method for 3D modeling of EM field in complex structures with inhomogeneous background conductivity in marine CSEM applications: 75th Annual International Meeting, SEG, Expanded Abstracts, 510−513.
[34] Meng, Q. X., Hu, X. Y., Pan,H. P., and Zhou, F., 2017, Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method: Applied Geophysics, 14(1), 175−186.
[35] Shang, X. M., 2014, Static correction in time-lapse seismic data processing. Geophysical & Geochemical Exploration, 38(1), 162−166.
[36] Shen, J. S., Wang, Z. G., and Ma, C., 2014, Application of the cross-hole electromagnetic method (CHEM) in hydrocarbon reservoir monitoring: Oil Geophysical Prospecting, 49(1), 213−224.
[37] Shang, X. M., 2014, Static correction in time-lapse seismic data processing. Geophysical & Geochemical Exploration, 38(1), 162−166.
[38] Shi, Y. L., Hu, Z. Z., Huang, W. H., Wei, Q., Zhang, S., Meng,C. x., and Ji, L. X., 2016, The distribution of deep source rocks in the GS Sag: joint MT-gravity modeling and constrained inversion: Applied Geophysics,13(3), 469−479.
[39] Sugihara, M., Nawa, K., and Nishi, Y., 2013, Continuous gravity monitoring for CO2 geo-sequestration: Energy Procedia, 37, 4302−4309.
[40] Tang, Q. J., Hang, L. G., and Dou, X. Y., 2010, Simulation based on cross-hole time-lapse seismic record of Random monoclinic media: Journal of Oil and Gas Technology, 32(2), 261−266.
[41] Tietze, K., Ritter, O., and Veeken, P., 2015, Controlled-source electromagnetic monitoring of reservoir oil saturation using a novel borehole to surface configuration: Geophysical Prospecting, 63(6), 1468−1490.
[42] Weidelt, P., 1975, EM induction in three-dimensional structures: Geophysics, 41, 85−109.
[43] Wirianto, M., Mulder, W. A., and Slob, E. C., 2010, A feasibility study of land CSEM reservoir monitoring in a complex 3-D model: Geophysical Journal International, 181(2), 741−755.
[44] Young, W. M., and Lumley, D., 2015, Feasibility analysis for time-lapse seafloor gravity monitoring of producing gas fields in the Northern Carnarvon Basin, offshore Australia: Geophysics, 80(2), WA149−WA160.
[45] Zhang, J. H., Li, J., Xiao, W., Tang, M. Y., Zhang, Y. Y., Cui, S. L., and Qu, Z. P., 2016, Seismic dynamic monitoring in CO2 flooding based on characterization of frequency-dependent velocity factor: Applied Geophysics, 13(2), 307−314.
[46] Zhang, R. W., Li, H. Q., Zhang, B. J., Huang, H. D., and Wen, P. F., 2015, Detection of gas hydrate sediments using prestack seismic AVA inversion: Applied Geophysics, 12(3), 453−464.
[47] Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems: Elsevier, 627.
[48] Zhdanov, M. S., and Lee, S. K., 2005, Integral equation method for 3D modeling of EM field in complex structures with inhomogeneous background conductivity in marine CSEM applications: 75th Annual International Meeting, SEG, Expanded Abstracts, 510−513.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司