APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 551-558    DOI: 10.1007/s11770-017-0653-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于洗牌蛙跳算法的瑞雷波非线性反演
孙成禹1,王妍妍1,伍敦仕1,秦效军2
1. 中国石油大学(华东),青岛 266580
2. 华北油田友信勘探开发公司,河北任丘 062552
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm
Sun Cheng-Yu1, Wang Yan-Yan1, Wu Dun-Shi1, and Qin Xiao-Jun2
1. China University of Petroleum (East China), Qingdao 266580, China.
2. Youxin Exploration and Development Co. of Huabei oilfield, Renqiu 062552, China.
 全文: PDF (908 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 目前,各种主、被动源瑞雷波勘探方法在近地表探测中扮演着日益重要的角色,利用瑞雷波频散曲线反演可以得到近地表横波速度信息,但是瑞雷波频散曲线反演问题是高度非线性的全局优化问题。为了缓解陷入局部最优解的风险,本文将一种新的全局优化方法—洗牌蛙跳算法引入到瑞雷波频散曲线反演中。洗牌蛙跳算法是一种群智能优化算法,通过模拟青蛙种群的觅食行为来实现最优化问题的求解,具有计算速度快,需要调整的参数少,全局寻优能力强的优点。为了检验洗牌蛙跳算法的可靠性和计算能力,首先对不含噪声和含噪声的四层理论模型进行了反演试算。然后,利用不含噪声数据对洗牌蛙跳算法与粒子群优化算法进行比较分析。最后,对实际数据进行反演,以检验洗牌蛙跳算法的实用性。理论地层模型和实际数据的测试结果表明:洗牌蛙跳算法可以有效地定量解释瑞雷波频散曲线,收敛速度、反演精确总体优于经典粒子群优化算法与改进粒子群优化算法,具有很大的发展潜力。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词洗牌蛙跳算法   瑞雷波   频散曲线   非线性反演   横波速度     
Abstract: At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
Key wordsShuffle frog-leaping algorithm   Rayleigh wave   dispersion curves   non-linear inversion   shear wave velocity   
收稿日期: 2017-07-28;
基金资助:

本研究由国家自然科学基金(编号:41374123)资助。

引用本文:   
. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. APPLIED GEOPHYSICS, 2017, 14(4): 551-558.
 
[1] Beaty, K. S., Schmitt, D. R., and Sacchi, M., 2002. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure: Geophys. J. Int., 151, 622−631.
[2] Buchen, P. W., and Ben-Hador, R., 1996, Free-mode surface-wave computations: Geophysical Journal International, 124(3), 869−887.
[3] Dal Moro, G., Pipan, M., and Gabrielli, P., 2007, Rayleigh wave dispersion curve inversion viagenetic algorithms and marginal posterior probability density estimation: Journal of Applied Geophysics, 61(1), 39−55.
[4] Elbeltagi, E., Hegazy, T., and Grierson, D., 2005. Comparison among five evolutionary-based optimization algorithms: Advanced Engineering Informatics, 19(1), 43−53.
[5] Eusuff, M. M., and Lansey, K. E., 2003, Optimization of water distribution network design using the shuffled frog-leaping algorithm: Journal of Water Resources Planning and Management, 129(3), 210−225.
[6] Eusuff, M., Lansey, K., and Pasha, F., 2006, Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization: Engineering Optimization, 38(2), 129−154.
[7] Liu, Z., and Wang, F., 2016, Improvement of discrete shuffled frog-leaping algorithm and application in compressed sensing reconstruction: Journal of Jilin University Engineering and Technology Edition, 46(4), 1261−1268.
[8] Lu, Y., Peng, S., Du, W., et al., 2016, Rayleigh wave inversion using heat-bath simulated annealing algorithm: Journal of Applied Geophysics, 134, 267−280.
[9] Luo, X., Yang, Y., and Li, X., 2008. Solving TSP with shuffled frog-leaping algorithm: Eighth international conference on intelligent systems design and applications, IEEE, 3, 228−232.
[10] Poormirzaee, R., 2016, S-wave velocity profiling from refraction microtremor Rayleigh wave dispersion curves via pso inversion algorithm: Arabian Journal of Geosciences, 9(16), 673.
[11] Socco, L. V., Foti, S., and Boiero, D., 2010, Surface-wave analysis for building near-surface velocity models-Established approaches and new perspectives: Geophysics, 75(5), A83−A102.
[12] Song, X., Gu, H., Zhang, X., et al., 2008, Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh wave dispersion curves: Computers & Geosciences, 34(6), 611−624.
[13] Song, X., Tang, L., Lv, X., et al., 2012, Application of particle swarm optimization to interpret Rayleigh wave dispersion curves: Journal of Applied Geophysics, 84, 1−13.
[14] Song, Y. Y., Castagna, J. P., Black, R. A., et al., 1989, Sensitivity of near-surface shear-wave velocity determination from Rayleigh and Love waves: Expanded Abstracts of the 59th Annual International Meeting, SEG, Expanded Abstracts, 509−512.
[15] Tran, K. T., and Hiltunen, D. R., 2012a, One-dimensional inversion of full waveforms using a genetic algorithm: Journal of Environmental & Engineering Geophysics, 17(4), 197−213.
[16] Tran, K. T., and Hiltunen, D. R., 2012b, Two-dimensional inversion of full waveforms using simulated annealing: Journal of Geotechnical & Geoenvironmental Engineering, 138(9), 1075−1090.
[17] Xia, J., Miller, R. D., and Park, C. B., 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64(3), 691− 700.
[18] Xiao, Y., Lin, T., Li, B., Hou, B., and Shi, G., 2016, Improvement strategy of adaptive parameter adjustment for shuffled frog leaping algorithm: Systems Engineering and Electronics (in Chinese), 38(8), 1939−1950.
[19] Xu, Y., Wang, L., Zhou, G., et al., 2011, An effective shuffled frog leaping algorithm for solving hybrid flow-shop scheduling problem: The International Journal of Advanced Manufacturing Technology, 52(5−8), 699−713.
[20] Yamanaka, H., and Ishida, H., 1996, Application of genetic algorithm to an inversion of surface wave dispersion data: Bulletin of the Seismological Society of America, 86, 436−444.
[21] Yan, S. G., Xie, F. L., Li, C. Z., et al., 2016, Dispersion function of Rayleigh waves in porous layered half-space system: Applied Geophysics, 13(2), 333−342.
[22] Zhou, T. F., Peng, G. X., Hu, T. Y., Duan, W. S., Yao, F. C., and Liu, Y. M., 2014, Rayleigh wave nonlinear inversion based on the fire fly algorithm: Applied Geophysics, 11(2), 167−178.
[1] 李欣欣,李庆春. 基于Aki公式的主动源瑞雷波频散曲线提取方法研究[J]. 应用地球物理, 2018, 15(2): 290-298.
[2] 李琳,马劲风,王浩璠,谭明友,崔世凌,张云银,曲志鹏. 胜利油田高89区块CO2驱油与地质封存过程中横波速度预测方法研究[J]. 应用地球物理, 2017, 14(3): 372-380.
[3] 江沸菠,戴前伟,董莉. 基于剪枝贝叶斯神经网络的电阻率成像非线性反演[J]. 应用地球物理, 2016, 13(2): 267-278.
[4] 周腾飞, 彭更新, 胡天跃, 段文胜, 姚逢昌, 刘依谋. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
[5] 杨小慧, 曹思远, 李德春, 于鹏飞, 张浩然. 瑞利型槽波品质因子及特性分析[J]. 应用地球物理, 2014, 11(1): 107-114.
[6] 刘灵, 耿建华, 郭彤楼. 横波速度预测的边界加权平均法[J]. 应用地球物理, 2012, 9(4): 421-428.
[7] 王晶, 陈德华, 张海澜, 张秀梅, 何 晓, 王秀明. 声波测井中的相速度与群速度讨论[J]. 应用地球物理, 2012, 9(1): 108-113.
[8] 魏超, 李小凡, 郑晓东. 基于群体搜索的串行蒙特卡罗反演方法的并行算法[J]. 应用地球物理, 2010, 7(2): 127-134.
[9] 赵太银, 胡光岷, 贺振华, 黄德济. 二阶精度广义非线性全局最优的偏移速度反演方法[J]. 应用地球物理, 2009, 6(2): 138-149.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司