APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 543-550    DOI: 10.1007/s11770-017-0647-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于数据驱动和反演策略的时空域随机噪声衰减方法
赵玉敏1,2,李国发1,2,王伟1,2,周振晓3,唐博文3,张文波3
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3 东方地球物理勘探有限责任公司物探技术研究中心,涿州 072750
Inversion-based data-driven time-space domain random noise attenuation method
Zhao Yu-Min1,2, Li Guo-Fa1,2, Wang Wei1,2, Zhou Zhen-Xiao3, Tang Bo-Wen3, and Zhang Wen-Bo3
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. BGP Geophysical Research Center, Zhuozhou 072750, China.
 全文: PDF (950 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规的时间-空间域和频率-空间域预测滤波方法假设地震记录由地震信号和随机噪声两部分构成,即所谓的加噪声模型,但是,在对随机噪声进行估算时,又假设随机噪声可以通过预测误差滤波器由地震记录中进行预测,即所谓的源噪声模型。这种滤波前后噪声模型的不一致降低了该类方法的去噪能力和保幅性能。为了克服噪声模型前后不一致的问题,本文提出了一种基于反演的时空域随机噪声衰减方法。它首先从地震数据中估算预测滤波算子,该算子表征了地震信号的可预测性,自适应地描述了地震信号的空间结构。在得到预测误差算子之后,将该算子作为正则化约束引入到地震信号反演系统,由含有随机噪声的地震数据直接反演地震信号。不同于常规随机噪声衰减方法,该方法将随机噪声衰减问题归结为正则化约束下的地震信号反演问题,克服了常规方法噪声模型的不一致问题。我们采用模型数据和实际数据进行了实验分析,并与常规预测滤波方法进行了效果对比。实验结果表明:与常规方法相比,本文方法在噪声压制的同时,没有对有效信号产生明显伤害,具有更好的振幅保持能力。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词噪声衰减   预测滤波   信号反演   正则化约束     
Abstract: Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, when estimating random noise, it is assumed that random noise can be predicted from the seismic data by convolving with a prediction error filter. That is, the source-noise model. Model inconsistencies, before and after denoising, compromise the noise attenuation and signal-preservation performances of prediction filtering methods. Therefore, this study presents an inversion-based time-space domain random noise attenuation method to overcome the model inconsistencies. In this method, a prediction error filter (PEF), is first estimated from seismic data; the filter characterizes the predictability of the seismic data and adaptively describes the seismic data’s space structure. After calculating PEF, it can be applied as a regularized constraint in the inversion process for seismic signal from noisy data. Unlike conventional random noise attenuation methods, the proposed method solves a seismic data inversion problem using regularization constraint; this overcomes the model inconsistency of the prediction filtering method. The proposed method was tested on both synthetic and real seismic data, and results from the prediction filtering method and the proposed method are compared. The testing demonstrated that the proposed method suppresses noise effectively and provides better signal-preservation performance.
Key wordsRandom noise attenuation   prediction filtering   seismic data inversion   regularization constraint   
收稿日期: 2017-04-19;
基金资助:

本研究由国家自然科学基金项目(编号:41474109)和中国石油天然气集团公司项目(编号:2016A-33)联合资助。

引用本文:   
. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
. Inversion-based data-driven time-space domain random noise attenuation method[J]. APPLIED GEOPHYSICS, 2017, 14(4): 543-550.
 
[1] Abma, R., and Claerbout, J. F., 1995, Lateral prediction for noise attenuation by t-x and f-x techniques: Geophysics, 60(6), 1887-1896.
[2] Canales, L. L., 1984, Random noise reduction: 54th Annual International Meeting, SEG, Expanded Abstracts, 525-527.
[3] Chase, M. K., 1992, Random noise reduction by FXY prediction filtering: Exploration Geophysics, 23(2), 51-56.
[4] Chen, K., and Sacchi, M. D., 2013, Robust reduced-rank seismic denoising: 83th Annual International Meeting, SEG, Expanded Abstracts, 4272-4277.
[5] Claerbout, J. F., 1992, Earth soundings analysis: Processing versus inversion: Blackwell Scientific Publications, United Kingdom.
[6] Crawley, S., Claerbout, J. F., and Clapp, R., 1999, Interpolation with smoothly nonstationary prediction-error filters: 69th Annual International Meeting, SEG, Expanded Abstracts, 1154-1157.
[7] Freire, Sergio, L. M., and Ulrych, T. J., 1988, Application of singular value decomposition to vertical seismic profiling: Geophysics, 53(6), 778-785.
[8] Futterman, W. I., 1962, Dispersive body waves: Journal of Geophysical Research, 67(13), 5279-5291.
[9] Gulunay, N., 1986, FXDECON and complex Wiener prediction filter: 56th Annual International Meeting, SEG, Expanded Abstracts, 279-281.
[10] Hornbostel, S., 1991, Spatial prediction filtering in the t-x and f-x domains: Geophysics, 56(12), 2019-2026.
[11] Li, G. F., 1995, Full 3-D random-noise attenuation: Oil Geophysical Prospecting (in Chinese), 30(3), 310-318.
[12] Li, G. F., Liu, Y., Zheng, H., and Huang, W., 2015, Absorption decomposition and compensation via a two-step scheme: Geophysics, 80(6), 145-155.
[13] Li, G. F., Sacchi, M. D., and Zheng, H., 2016a, In situ evidence for frequency dependence of near-surface Q: Geophysical Journal International, 204(2), 1308-1315.
[14] Li, G. F., Zheng, H., Zhu, W. L., et al., 2016b, Tomographic inversion of near-surface Q factor by combining surface and cross-hole seismic surveys: Applied Geophysics, 13(1), 93-102.
[15] Liu, Y., Liu, N., and Liu, C., 2015, Adaptive prediction filtering in t-x-y domain for random noise attenuation using regularized nonstationary autogression: Geophysics, 80(1), V13-V21.
[16] Liu, Z., Chen, X., and Li, J., 2009, Noncausal spatial prediction filtering based on an ARMA model: Applied Geophysics, 6(2), 122-128.
[17] Naghizadeh, M., and Sacchi, M. D., 2009, f-x adaptive seismic-trace interpolation: Geophysics, 74(1), V9-V16.
[18] Oropeza, V., and Sacchi, M. D., 2011, Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis: Geophysics, 76(3), V25-V32.
[19] Sacchi, M. D., 2009, FX singular spectrum analysis: Cspg Cseg Cwls Convention.
[20] Sacchi, M. D., and Kuehl, H., 2001, ARMA formulation of FX prediction error filters and projection filters: Journal of Seismic Exploration, 9(3), 185-197.
[21] Soubaras, R., 1994, Signal-preserving random noise attenuation by the f-x projection: 64th Annual International Meeting, SEG, Expanded Abstracts, 1576-579.
[22] Soubaras, R., 1995, Deterministic and statistical projection filtering for signal-preserving noise attenuation: 57th EAGE Annual Meeting, Expanded Abstracts, A051.
[23] Soubaras, R., 2000, 3D projection filtering for noise attenuation and interpolation: 64th Annual International Meeting, SEG, Expanded Abstracts, 2096-2099.
[24] Trickett, S., 2008, F-xy Cadzow noise suppression: 78th Annual International Meeting, SEG, Expanded Abstracts, 2586-2590.
[25] Yuan, S. Y., Wang, S. X., and Li, G. F., 2012, Random noise reduction using Bayesian inversion: Journal of Geophysics and Engineering, 9(1), 60-68.
[1] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[2] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[3] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[4] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[5] 蔡涵鹏, 贺振华, 李亚林, 何光明, 邹文, 张洞君, 刘璞. 边界和振幅特性保持的自适应噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 289-300.
[6] 包乾宗, 李庆春, 陈文超. 基于Curvelet变换的探地雷达资料噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 301-310.
[7] 刘国昌, 陈小宏, 李景叶, 杜婧, 宋家文. 基于非稳态多项式拟合的地震噪声衰减方法研究[J]. 应用地球物理, 2011, 8(1): 18-26.
[8] 王德利, 仝中飞, 唐晨, 朱恒. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司