APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 529-542    DOI: 10.1007/s11770-017-0642-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
改进的Gabor小波变换的特性在地震信号处理和解释中的应用
姬战怀1,2,严胜刚1
1. 西北工业大学,航海学院,陕西西安710072
2. 西安科技大学,理学院,陕西西安710054
Properties of an improved Gabor wavelet transform and its applications to seismic signal processing and interpretation
Ji Zhan-Huai1,2 and Yan Sheng-Gang1
1. School of Marine Science and Technology, Northwestern  Polytechnical University, Xi’an 710072, China.
2. School of Science, Xi’an University of Science and Technology, Xi’an 710054, China.
 全文: PDF (1441 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 这篇文章重点研究改进的 Gabor 小波(improved Gabor wavelet, IGW)及其变换,并讨论了它在地震信号处理和解释中的应用。改进的Gabor小波变换具有以下特性:1) IGWT把时域信号映射到时间-频率域,而传统Gabor小波变换把时间信号映射到时间-尺度域;2) 改进的Gabor小波变换(improved Gabor wavelet transform, IGWT)可用于信号分频,通过固定变换的主频参数 dominant frequency,变换能提取相应的子带信号,且其主频部分的信息与原信号相应频率部分的信息一致,通过调节变换的分辨率因子,变换能有效控制子带信号的带宽;3) 用 IGWT 和它的逆变换(Improved Gabor wavelet inverse transform, IGWIT)构建的滤波器有良好的时-频局部性,在指定时-频范围内能实现针对性滤波。文章用仿真实验和实际用例验证IGWT的这些特性,并在提高地震信号分辨率、地震信号分频和识别小断层等地震信号处理和解释等方面的应用中取得良好效果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地震信号   逆变换   Gabor小波变换   断层   分辨率   瞬时相位     
Abstract: This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet transform has the following properties. First, unlike the conventional transform, the improved Gabor wavelet transform (IGWT) maps time domain signals to the time-frequency domain instead of the time-scale domain. Second, the IGW’s dominant frequency is fixed, so the transform can perform signal frequency division, where the dominant frequency components of the extracted sub-band signal carry essentially the same information as the corresponding components of the original signal, and the sub-band signal bandwidth can be regulated effectively by the transform’s resolution factor. Third, a time-frequency filter consisting of an IGWT and its inverse transform can accurately locate target areas in the time-frequency field and perform filtering in a given time-frequency range. The complete IGW transform’s properties are investigated using simulation experiments and test cases, showing positive results for seismic signal processing and interpretation, such as enhancing seismic signal resolution, permitting signal frequency division, and allowing small faults to be identified.
Key wordsSeismic signal   inverse transform   Gabor wavelet transform   faults   resolutions   instantaneous phase   
收稿日期: 2016-11-29;
基金资助:

本研究由科技型中小企业创新基金(编号:12C26216106562)和陕西省教育厅专项科研计划 (编号: 11JK0777) 联合资助。

引用本文:   
. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
. Properties of an improved Gabor wavelet transform and its applications to seismic signal processing and interpretation[J]. APPLIED GEOPHYSICS, 2017, 14(4): 529-542.
 
[1] Arivazhagan, S., Ganesan, L., and Priyal, S. P., 2006, Texture classification using Gabor wavelets based rotation invariant features: Pattern Recognition Letters, 27, 1976-1982.
[2] Bastiaans, M. J., 1980, Gabor’s expansion of a signal into Gaussian elementary signals: Proceedings of the IEEE, 68(4), 538−539.
[3] Braga, I. L. S., and Moraes, F. S., 2013, High-resolution gathers by inverse Q filtering in the wavelet domain: Geophysics, 78(2), 53−61.
[4] Cai, H. P., He, Z. H., Gao, G., and Huang, D. J., 2013, Seismic data matching pursuit using hybrid optimization algorithm and its application: Journal of Jiaotong University, 44(2), 687−694.
[5] Chakraborty, A., and Okaya, D., 1995, Frequency-time decomposition of seismic data using wavelet-based methods: Geophysics, 60(6), 1906−1916.
[6] Chen, L., and Song, H. B., 2008, Extraction of seismic time-frequency attribute based on Morlet wavelet match tracing algorithm: Oil Geophysical Prospecting(in Chinese), 43(6), 673−679.
[7] Christos, Y., Jedrzej, M., Konstantinos, R., and Ioannis, A., 2014, Multicomponent decomposition of a time-varying acoustic Doppler signal generated by a passing railway vehicle using complex shifted Morlet wavelets: Transportation Research Part C, 44, 34−51.
[8] Dutilleux, P., Grossmann, A., and Kronland-Martinet, R., 1988, Application of the wavelet transform to the analysis, transformation and synthesis of musical sounds: Preprint of the 85th A.E.S. Convention, Los Angeles.
[9] Farge, M., 1992, Wavelet transform and their applications to turbulence: Ann, Rev. Fluid Mech., 24, 395−457.
[10] Feichtinger, H. G., and Strohmer, T., 1998, Gabor analysis and algorithms: Theory and applications: Birkhäuser, Boston, 267−294.
[11] Gabor, D., 1946, Theory of Communication: J. I. E. E. E., 93, 429−441.
[12] Goupillaud, P., Grossmann, A., and Morlet, J., 1984, Cycle-octave and related transforms in seismic signal analysis: Geoexploration, 23, 85−102.
[13] Gröchenig, K., 2001, Foundations of time-frequency analysis: Brikhäuser, Boston, 245−300.
[14] Grossmann, A., and Morlet, J., 1985, Decomposition of function into wavelets of constant shape, and related transforms, In Mathematics+Physics, In Streit, L., Ed., Lectures on Recent Results, Singapore: World Scientific., Vo.1, 135−165.
[15] Grossmann, A., Kronland-Martinet, R., and Morlet, J., 1989, Reading and understanding continues wavelet transforms, In: Wavelets, Time-frequency Methods and Phase Space. 1st Int. Wavelets Conf., Marseille, 2−20.
[16] Gryllias, K. C., and Antoniadis, I. A., 2013, Estimation of the instantaneous rotation speed using complex shifted Morlet wavelets: Mechanical Systems and Signal Processing, 38, 78−95.
[17] He, P., Li, P., and Sun, H. Q., 2011, Feature extraction of acoustic signals based on complex Morlet wavelet: Procedia Engineering, 15, 464−468.
[18] Huang, Y., Xu, D., and Wen, X. K., 2013, Optimization of wavelets in multi-wavelet decomposition and reconstruction method: Geophysical Prospecting for Petroleum, 52(1), 17−22.
[19] Ji, Z. H., Yan, S. G., and Bao, J. Q., An improved Gabor wavelet and its complete transforms: IEEE International Conference on Signal Processing, Communications and Computing, Conference Proceedings, Sept. 19−22, 2015, Ningbo, Zhejiang, China, 782−787.
[20] Ji, Z. H., Yan, S. G., and Zhang, L. Y., 2016, Detecting subtle faults using instantaneous phase of sub-band seismic data: SPG/SEG Beijing 2016 International Geophysical Conference, Conference Proceedings, 20−22, Apr. 2016, Beijing, China, 135−138.
[21] Jones, D. L., and Parks, T. W., 2000, A high resolution data-adaptive time-frequency representation [J]. IEEE Trans. Acoust. Speech Signal Process., 38(12), 2127−2135.
[22] Kulesh, M., Holschneider, M., and Diallo, M. S., 2008, Geophysical wavelet library: Applications of the continuous wavelet transform to the polarization and dispersion analysis of signals: Computers & Geosciences, 34, 1732-1752.
[23] Liu, E., Queen, J. H., et al., 2003, Observation and analysis of frequency-dependent anisotropy from a multicomponent VSP at Bluebell-Altamont field, Utah: Journal of Applied Geophysics,54(3−4), 319−333.
[24] Liu, H. Y., Huang, W. G., et al., 2014, Adaptive spectral kurtosis filtering based on Morlet wavelet and its application for signal transients detection: Signal Processing, 96, 118−124.
[25] Liu, W. Y., and Tang, B. P., 2011, A hybrid time-frequency method based on improved Morlet wavelet and auto terms window: Expert Systems with Applications, 38, 7575-7581.
[26] Mansinha, L., Stockwell, R. G., et al., 1997, Local S-spectrum analysis of 1-D and 2-D data. Physics of the Earth and Planetary Interiors, 103(3), 329−336.
[27] Morlet, J., Arens, G., Fourgeau, E., and Giard, D., 1982, Wave propagation and sampling theory-Part II: Sampling theory and complex waves: Geophysics, 47(2), 222−236.
[28] Qin, Q. Q., and Yang, Z. K., 1998, Practical wavelet analysia: Xidian University Press, Xi’an, China.
[29] Shen, L. L., Bai, L., and Fairhurst, M., 2007, Gabor wavelets and General Discriminant Analysis for face identification and verification: Image and Vision Computing, 25, 553-563.
[30] Simonovski, I., and Bolte?ar, M., 2003, The norms and variances of the Gabor, Morlet and general harmonic wavelet functions: Journal of Sound and Vibration, 64, 545−557.
[31] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: the S transform: IEEE Trans. Signal Process, 44(4), 998−001.
[32] Taner, M. T., Koehler, F., and Sheriff, R. E., 1979, Complex seismic trace analysis: Geophysics, 44(6), 1041−1063.
[33] Yang, L. H., Dai, D. Q., et al., 2003, A wavelet tour of Signal processing (Second edition), in Mallat, S., Ed., Signal Process: China Machine Press, 62−65.
[34] Zhang, F. C., and Li, C. H., 2013, Amplitude-preserved AVF and isofrequency section construction based on seismic matching pursuit: Geophysical Prospecting for Petroleum (in Chinese), 52(3), 234−239.
[35] Zuñga, A. G., Florindo, J. B., and Bruno, O. M., 2014, Gabor wavelets combined with volumetric fractal dimension applied to texture analysis: Pattern Recognition Letters, 36,135-143.
[1] 王德营,孔雪,董烈乾,陈立华,王永军,王晓晨. 一种非白噪反射系数序列的预测反褶积方法*[J]. 应用地球物理, 2019, 16(1): 109-123.
[2] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[3] 武绍江,王一博,马玥,常旭. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
[4] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[5] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[6] 张华,贺振华,李亚林,李瑞,何光明,李忠. 频域谱反演提高转换波薄层分辨率方法研究与应用[J]. 应用地球物理, 2017, 14(2): 247-257.
[7] 邓世武,贾雨,姚兴苗,刘致宁. 多类型断层条件下的复杂地层曲面的重构方法[J]. 应用地球物理, 2017, 14(2): 195-204.
[8] 田雨,徐洪,张兴阳,王红军,郭同翠,张良杰,龚幸林. 基于图论多分辨率聚类分析的测井岩相识别研究——以阿姆河盆地台内滩气田为例[J]. 应用地球物理, 2016, 13(4): 598-607.
[9] 陈波,贾晓峰,谢小碧. 基于染色算法的宽频带地震照明及分辨率分析[J]. 应用地球物理, 2016, 13(3): 480-490.
[10] 车小花,乔文孝,鞠晓东,王瑞甲. 基于相控圆弧阵的方位声波固井质量评价:数值模拟与现场测试[J]. 应用地球物理, 2016, 13(1): 194-202.
[11] 宋建国, 宫云良, 李珊. 斜缆数据频率域高分辨率Radon变换与虚反射消除方法[J]. 应用地球物理, 2015, 12(4): 564-572.
[12] 王雄文, 王华忠. 稀疏时频分解方法的研究与运用[J]. 应用地球物理, 2014, 11(4): 447-458.
[13] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[14] 窦喜英, 韩立国, 王恩利, 董雪华, 杨庆, 鄢高韩. 一种基于特征值相干结果直方图均衡化的裂缝增强方法[J]. 应用地球物理, 2014, 11(2): 179-185.
[15] 李志娜, 李振春, 王鹏, 徐强. λ-f域高分辨率Radon变换多次波压制方法研究[J]. 应用地球物理, 2013, 10(4): 433-441.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司