APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 523-528    DOI: 10.1007/s11770-017-0629-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
时间域波场重构反演
李振春1,2,蔺玉曌1,2,张凯1,2,李媛媛1,2,于振南1
1. 中国石油大学(华东)地球科学与技术学院,青岛 266580
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
Time-domain wavefield reconstruction inversion
Li Zhen-Chun1,2, Lin Yu-Zhao1,2, Zhang Kai1,2, Li Yuan-Yuan1,2, and Yu Zhen-Nan1
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
 全文: PDF (658 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 波场重构反演是一种改进的全波形反演理论。该反演方法通过将波动方程引入目标函数中拓宽了解的寻找空间,通过重构真实波场来计算模型梯度,大大提高了计算效率的同时还减弱了局部极小值的影响。但目前该理论基本在频率域进行,而频率域反演对计算内存的需求太高,并且很难应用到实际生产中。因此,本文将波场重构反演拓展到时间域,推导了时间域波场重构的增广方程,结合模型试算结果对波场重构的模型梯度进行了修改。数值实验表明,时间域波场重构反演准确性较高并且对低频信息具有良好的重建能力。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词波场重构   波形反演   增广方程   时间域反演     
Abstract: Wavefield reconstruction inversion (WRI) is an improved full waveform inversion theory that has been proposed in recent years. WRI method expands the searching space by introducing the wave equation into the objective function and reconstructing the wavefield to update model parameters, thereby improving the computing efficiency and mitigating the influence of the local minimum. However, frequency-domain WRI is difficult to apply to real seismic data because of the high computational memory demand and requirement of time-frequency transformation with additional computational costs. In this paper, wavefield reconstruction inversion theory is extended into the time domain, the augmented wave equation of WRI is derived in the time domain, and the model gradient is modified according to the numerical test with anomalies. The examples of synthetic data illustrate the accuracy of time-domain WRI and the low dependency of WRI on low-frequency information.
Key wordsWavefield reconstruction   waveform inversion   augmented wave equation   time-domain inversion   
收稿日期: 2016-05-19;
基金资助:

本研究由国家自然基金(编号:41374122和41504100)资助。

引用本文:   
. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
. Time-domain wavefield reconstruction inversion[J]. APPLIED GEOPHYSICS, 2017, 14(4): 523-528.
 
[1] De Hoop, A. T., 1960, A modification of Cagniard’s method for solving seismic pulse problems: Applied Scientific Research, Section B, 8(1), 349-356.
[2] Fang, Z., and Herrmann, F., 2015, Source estimation for wavefield reconstruction Inversion: 77th Annual International Conference and Exhibition, EAGE, Extended Abstracts, 1854-1857.
[3] Moghaddam, P. P., and Mulder, W. A., 2012, The diagonalator: inverse data space full waveform inversion: SEG Technical Program, Expanded Abstracts, 1-6.
[4] Mosegaard, K., and Tarantola, A., 1995, Monte Carlo sampling of solutions to inverse problems: Journal of Geophysical Research: Solid Earth, 100(B7), 12431-12447.
[5] Mulder, W. A., and Hak, B., 2009, Simultaneous imaging of velocity and attenuation perturbations from seismic data is nearly impossible: 71th Conference & Technical Exhibition, EAGE, Extended Abstracts, S043.
[6] Peters, B., Herrmann, F. J., and Van, L. T., 2014, Wave-equation Based Inversion with the Penalty Method-Adjoint-state Versus Wavefield-reconstruction Inversion: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, 3002-3005.
[7] Plessix, R. E., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167(2), 495-503.
[8] Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64(3), 888-901.
[9] Pratt, R. G., Shin C., and Hick, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133(2), 341-362.
[10] Shen, P., and Symes, W. W., 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73(5), VE49-VE59.
[11] Shin, C., and Cha, Y. H., 2009, Waveform inversion in the Laplace—Fourier domain: Geophysical Journal International, 177(3), 1067-1079.
[12] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259-1266.
[13] Tarantola, A., and Valette, B., 1982, Generalized nonlinear inverse problems solved using the least squares criterion: Reviews of Geophysics, 20(2), 219-232.
[14] van Leeuwen, T., and Herrmann, F. J., 2013, Mitigating local minima in full-waveform inversion by expanding the search space: Geophysical Journal International, 195(1), 661-667.
[15] van Leeuwen, T., Herrmann, F. J., and Peters, B., 2010, A new take on FWI: Wavefield reconstruction inversion: 76th Annual International Conference and Exhibition, EAGE, Extended Abstracts, 2651-2654.
[16] van Leeuwen, T., and Mulder, W. A., 2010, A correlation-based misfit criterion for wave-equation traveltime tomography: Geophysical Journal International, 182(3), 1383-1394.
[17] Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74(6), WCC1-WCC26.
[1] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[2] 崔超,黄建平,李振春,廖文远,关哲. 一种基于拟相位信息目标泛函的反射波波形反演方法[J]. 应用地球物理, 2017, 14(3): 407-418.
[3] 曲英铭,李振春,黄建平,李金丽. 棱柱波形与全波形联合反演方法[J]. 应用地球物理, 2016, 13(3): 511-518.
[4] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
[5] 麻纪强, 耿建华. 基于Cauchy先验分布的AVO弹性参数弱非线性波形反演[J]. 应用地球物理, 2013, 10(4): 442-452.
[6] 王义, 董良国, 刘玉柱. 一种改进的全波形反演混合迭代优化方法[J]. 应用地球物理, 2013, 10(3): 265-277.
[7] 韩淼, 韩立国, 刘春成, 陈宝书. 基于混叠震源和频率组编码的频率域自适应全波形反演[J]. 应用地球物理, 2013, 10(1): 41-52.
[8] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司