APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (1): 57-64    DOI: 10.1007/s11770-012-0314-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
岩石的临界孔隙度反演及横波预测
张佳佳1,2,李宏兵1,姚逢昌1
1. 中国石油勘探开发研究院,北京 100083 
2. 中国海洋大学海洋地球科学学院,山东青岛 266100
Rock critical porosity inversion and S-wave velocity prediction*
Zhang Jia-Jia1,2, Li Hong-Bing1, and Yao Feng-Chang1
1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, 100083, China.
2. College of Marine Geoscience, Ocean University of China, Qingdao, 266100, China.
 全文: PDF (820 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 临界孔隙度模型是利用岩石的临界孔隙度来计算岩石骨架的弹性模量,岩石的临界孔隙度值受到很多因素的影响,而实际应用中通常无法获得准确的临界孔隙度值,只能选取经验临界孔隙度值,就会给岩石物理建模带来误差。本文提出了一种利用纵波速度反演岩石的临界孔隙度的方法,并且把它应用于横波预测中。实验室和测井数据应用结果表明本文提出的方法可以降低以往选取经验值带来的不确定性,并且能够为横波预测提供准确的临界孔隙度值,提高了横波预测的精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张佳佳
李宏兵
姚逢昌
关键词Gassmann方程   岩石骨架   临界孔隙度   临界孔隙度模型   横波预测     
Abstract: A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which signifi cantly improves the prediction accuracy.
Key wordsGassmann’s equations, dry frame   critical porosity   critical porosity model   S-wave velocity prediction   
收稿日期: 2011-04-19;
基金资助:

国家科技重大专项(编号:2011ZX05018-001)资助

引用本文:   
张佳佳,李宏兵,姚逢昌. 岩石的临界孔隙度反演及横波预测[J]. 应用地球物理, 2012, 9(1): 57-64.
ZHANG Jia-Jia,LI Hong-Bing,YAO Feng-Chang. Rock critical porosity inversion and S-wave velocity prediction*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 57-64.
 
[1] Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media II: Ellipsoidal inclusions:
[2] Journal of the Acoustical Society of America, 68, 1820 - 1831.
[3] ——, 1992, Single-scattering approximations for coefficients in Biot’s equations of poroelasticity: Journal
[4] of the Acoustical Society of America, 91, 551 - 571.
[5] Gassmann, F., 1951, Über die elastizität poroser medien: Veirteljahrsschrift der naturforschen: den Gesellschaft in
[6] Zürich, 96, 1 - 23.
[7] Han, D. H., 1986, Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated
[8] sediments: PhD Thesis, Stanford University.
[9] Hill, R., 1952, The elastic behavior of crystalline aggregate: Proceedings of the Physical Society, London, A65, 349 -
[10] 354.
[11] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990,
[12] A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The Log Analyst,
[13] , 355 - 369.
[14] Kuster, G. T., and Toksöz, M. N., 1974, Velocity and attenuation of seismic waves in two media, Part I:
[15] Theoretical considerations: Geophysics, 39, 587 - 606.
[16] Lee, M. W., 2006, A simple method of predicting S-wave velocity: Geophysics, 69(5), 161 - 164.
[17] Li, H. B., and Zhang, J. J., 2010, Modulus ratio of dry rock based on differential effective medium theory:
[18] Geophysics, 75(2), N43 - N50.
[19] Li, H. B., and Zhang, J. J., 2011, Elastic moduli of dry rocks containing spheroidal pores based on differential
[20] effective medium theory: Journal of Applied Geophysics, 75(4), 671 - 678.
[21] Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook: tools for seismic analysis in porous
[22] media: Cambridge University Press, Cambridge, 221 - 225.
[23] Murphy, W. F., III, 1984, Acoustic measures of partial gas saturation in tight sandstones: Journal of Geophysical
[24] Research, 89, 11549 - 11559.
[25] Norris, A., 1985, A differential scheme for the effective moduli of composites: Mechanics of Materials, 4, 1 - 16.
[26] Nur, A., 1992, Critical porosity and the seismic velocities in rocks: EOS, Transactions American Geophysical Union,
[27] , 43 - 66.
[28] Pride, S. R., Berryman, J. G., and Harris, J. M., 2004, Seismic attenuation due to wave-induced flow: Journal
[29] of Geophysical Research, 109(B1), B01201.
[30] Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time-to-porosity transform: 21st
[31] Annual Logging Symposium, SPWLA, paper P.
[32] Reuss, A., 1929, Berechnung der fliessgrenze von mischkristallen auf grund der plastizitätsbedingungen für
[33] einkristalle: Zeitschrift für Angewandte Mathematic und Mechanik, 9, 49 - 58.
[34] Russell, B. H., and Smith, T., 2007, The relationship between dry rock bulk modulus and porosity -An
[35] empirical study: CREWES Research Report, 19, 1 - 14.
[36] Voigt, W., 1928, Lehrbuch der kristallphysik: Teubner, 962 - 967.
[37] Wang, Z. J., 2000, Dynamic versus static elastic properties of reservoir rocks: Seismic and Acoustic Velocities in
[38] Reservoir Rocks, Society of Exploration Geophysics, Tulsa, 19, 531-539
[39] Wang, Z. J., 2001, Fundamentals of seismic rock physics: Geophysics, 66(2), 398 - 412.
[40] Wu, T. T., 1966, The effect of inclusion shape on the elastic moduli of a two-phase material: International Journal of
[41] Solids and Structures, 2, 1 - 8.
[42] Zhang, J. J., Li, H. B., Liu, H. S., and Cui, X. F., 2009, Accuracy of Krief, Nur, and Pride models in the study
[43] of rock physics: 79th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2005 - 2009.
[44] Zhang, J. J., 2010. Seismic rock physics modeling and its application in oil shale exploration: MS Thesis, Ocean
[45] University of China, Qingdao.
[46] Zimmerman, R. D., 1985, The effect of microcracks on the elastic moduli of brittle materials: Journal of Material
[47] Science Letters, 4, 1457 - 1460.
[1] 贺锡雷, 贺振华, 王绪本, 熊晓军, 蒋炼. 岩石骨架模型与地震孔隙度反演[J]. 应用地球物理, 2012, 9(3): 349-358.
[2] 晏信飞,姚逢昌,曹宏,巴晶,胡莲莲,杨志芳. 基于等效介质理论分析川中低孔砂岩的骨架结构[J]. 应用地球物理, 2011, 8(3): 163-170.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司