APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 505-516    DOI: 10.1007/s11770-017-0648-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Poynting矢量的角度域逆时偏移成像及对成像幅度的校正
刘继承1,2,谢小碧2,陈波3
1. 常熟理工学院电气与自动化工程学院,常熟 215500
2. 加州大学圣克鲁斯地球物理及行星物理研究所,美国加州 95064
3. 中山大学 地球科学与地质工程学院,广州 510275
Reverse-time migration and amplitude correction in the angle-domain based on Poynting vector
Liu Ji-Cheng1,2, Xie Xiao-Bi2, and Chen Bo3
1. School of Electric and Automation engineering, Changshu Institute of Technology, Changshu 215500, China.
2. Institute for Geophysics and Planetary Physics, University of California at Santa Cruz, CA 95064, USA.
3. College of Earth Science and Engineering, SUN YAT-SEN University, Guangzhou 510275, China.
 全文: PDF (1260 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对常规逆时偏移成像无法处理波动过程中不同角度信息的问题,提出了一种基于Poynting矢量的角度域逆时偏移成像及成像幅度的校正方法。利用Poynting矢量对波场传播方向进行分解,在时域内构建局部成像矩阵及局部照明矩阵。在局部成像矩阵中建立的角度域成像条件可以有效地消除低波数干扰,并在局部成像矩阵中可以进行角度域共成像点道集抽取、倾角估计等运算。利用局部照明矩阵进行基于全波波动方程的时域照明分析,在局部照明矩阵中计算倾角域幅度校正因子,利用校正因子对各角度的像进行校正,通过叠加实现对最终成像结果的幅度校正。最后通过SEG/EAGE模型进行数值计算验证了文中所述的计算方法。与基于局部平面波角度分解的角度域逆时偏移成像及成像校正方法相比,本文提供了一种角度域逆时偏移成像及其幅度校正的高效计算方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词Poyting矢量   角度域成像   局部成像矩阵   照明分析   幅度校正     
Abstract: We propose a method based on the Poynting vector that combines angle-domain imaging and image amplitude correction to overcome the shortcomings of reverse-time migration that cannot handle different angles during wave propagation. First, the local image matrix (LIM) and local illumination matrix are constructed, and the wavefield propagation directions are decomposed. The angle-domain imaging conditions are established in the local imaging matrix to remove low-wavenumber artifacts. Next, the angle-domain common image gathers are extracted and the dip angle is calculated, and the amplitude-corrected factors in the dip angle domain are calculated. The partial images are corrected by factors corresponding to the different angles and then are superimposed to perform the amplitude correction of the final image. Angle-domain imaging based on the Poynting vector improves the computation efficiency compared with local plane-wave decomposition. Finally, numerical simulations based on the SEG/EAGE velocity model are used to validate the proposed method.
Key wordsPoynting vector   angle-domain imaging   local image matrix   illumination analysis   amplitude correction   
收稿日期: 2017-02-08;
基金资助:

本研究由黑龙江省自然科学基金(编号:F 201404)资助。

引用本文:   
. 基于Poynting矢量的角度域逆时偏移成像及对成像幅度的校正[J]. 应用地球物理, 2017, 14(4): 505-516.
. Reverse-time migration and amplitude correction in the angle-domain based on Poynting vector[J]. APPLIED GEOPHYSICS, 2017, 14(4): 505-516.
 
[1] Bear, G., Lu, C., Lu, R., et al., 2000, The construction of subsurface illumination and amplitude maps via ray tracing:The Leading Edge, 19(7), 726-728.
[2] Cao, J., and Wu, R. S., 2009, Full-wave directional illumination analysis in the frequency domain: Geophysics, 74(4), S85-S93.
[3] Chen, T., and He, B. S., 2014, A normalized wave?eld separation cross-correlation imaging condition for reverse time migration based on Poynting vector: Applied Geophysics, 11(2), 158-166.
[4] Díaz, E., and Sava, P., 2015, Understanding the reverse time migration backscattering: noise or signal?: Geophysical Prospecting, 64(3), 581−594.
[5] Du, X., Fletcher, R., Mobley, E., et al., 2012, Source and receiver illumination compensation for reverse-time migration: 74th Annual International Conference and Exhibition, EAGE, Extended Abstracts, X046.
[6] Gelius, L. J., Lecomte, I., and Tabti, H., 2002, Analysis of the resolution function in seismic prestack depth imaging: Geophysical Prospecting, 50(5), 505-515.
[7] Gherasim, M., Albertin, U., Nolte, B., et al., 2012, Wave-equation angle-based illumination weighting for optimized subsalt imaging: 82th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 3293-3296.
[8] Hemon, C., 1978, Equations D’onde et modeles: Geophysical Prospecting, 26(4), 790-821.
[9] Hu, J., McMechan, G. A., and Guan, H. M., 2014, Comparison of methods for extracting ADCIGs from RTM: Geophysics, 79(3), 89-103.
[10] Jia, X. F., and Wu, R. S., 2009, Calculations of wavefield gradients and wave propagation angles in complex media: application to turning wave simulations: Geophysical Journal International, 178(3), 1565-1573.
[11] Lecomte, I., 2008, Resolution and illumination analyses in PSDM: A ray-based approach: The Leading Edge, 27(5), 650-663.
[12] Muerdter, D., and Ratcliff, D., 2001, Understanding subsalt illumination through ray-trace modeling, Part 1: Simple 2-D salt models: The Leading Edge, 20(6), 578-594.
[13] Poynting, J. H., 1884, On the transfer of energy in the electromagnetic field: Philosophical Transactions of the Royal Society of London, 175, 343-361.
[14] Sava, P., and Fomel, S., 2003, Angle-domain common image gathers by wavefield continuation methods: Geophysics, 68(3), 1065-1074.
[15] Sava, P., and Fomel, S., 2005a, Coordinate-independent angle-gathers for wave equation migration: 75th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 2052-2055.
[16] Sava, P., and Fomel, S., 2005b, Time-shift imaging condition:75th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 1850-1853.
[17] Sava, P., and Fomel, S., 2005c, Wave-equation common angle gathers for converted waves: 75th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 947-950.
[18] Sava, P., and Vasconcelos, I., 2011, Extended imaging conditions for wave equation migration: Geophysical Prospecting, 59(1), 35-55.
[19] Schneider, W. A., and Winbow, G.A., 1999, Efficient and accurate modeling of 3-D seismic illumination: 69th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 633-636.
[20] Thomas, A. D., and Graham, Q. W., 2011, RTM angle gathers using Poynting vectors: 81th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 3109-3113.
[21] Wang, B. L., Gao, J. H., and Chen, W. C., et al., 2013, Extracting Efficiently Angle Gathers Using Poynting Vector During Reverse Time Migration: Chinese Journal of Geophysics, 56(1), 262-268.
[22] Wang, M. X., Yang, H., and Osen, A., 2013, Full-wave equation based illumination analysis by NAD method: 75th EAGE Conference & Exhibition Incorporation, SPE, EUROPEC, 10-13.
[23] Wu, R. S., and Chen, L., 2002, Mapping directional illumination and acquisition-aperture efficacy by beamlet propagators: 72th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 1352-1355.
[24] Wu, R. S., Chen, L., and Xie, X. B., 2003, Directional illumination and acquisition dip-response: 65th Conference and Technical Exhibition, EAGE, Expanded abstracts, 1-4.
[25] Wu, R. S., and Luo, M. Q., 2005, Comparison of different schemes of image amplitude correction in pre-stack depth migration: 75th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 2060-2063.
[26] Wu, R. S., and Chen, L., 2006, Directional illumination analysis using beamlet decomposition and propagation: Geophysics, 71(4), S147-S159.
[27] Wu, R. S., Xie, X. B., Fehler, M., et al., 2006, Resolution analysis of seismic imaging: 68th Annual International Conference and Exhibition, EAGE, Extended Abstracts, GO48.
[28] Xie, X. B., and Wu, R. S., 2002, Extracting angle domain information from migrated wavefields: 72th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 1360-1363.
[29] Xie, X. B., Jin, S. W., and Wu, R. S., 2003, Three-dimensional illumination analysis using wave-equation based propagator: 73th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 989-992.
[30] Xie, X. B., Wu, R. S., Fehler, M., et al., 2005, Seismic resolution and illumination: A wave equation based analysis: 75th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 1862-1865.
[31] Xie, X. B., Jin, S. W., and Wu, R. S., 2006, Wave-equation based seismic illumination analysis: Geophysics, 71(5), S169-S177.
[32] Xie, X. B., and Yang, H., 2008, A full-wave equation based seismic illumination analysis methods: 70th Annual International Conference and Exhibition, EAGE, Extended Abstracts, P284.
[33] Xie, X. B., He, Y. Q., and Li, P. M., 2013, Seismic Illumination Analysis and Its Applications in Seismic Survey Design: Chinese Journal of Geophysics, 56(5), 1-14.
[34] Xu, S., Zhang, Y., and Tang, B., 2011, 3D common image gathers from reverse time migration: Geophysics, 76(2), S77-S92.
[35] Yan, R., and Xie, X. B., 2012a, An angle-domain imaging condition for elastic reverse time migration and its application to angle gather extraction: Geophysics, 77(5), 105-115.
[36] Yan, R., and Xie, X. B., 2012b, AVA analysis based on RTM angle-domain common image gather: 82th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 1-6.
[37] Yan, R., Guan, H. M., Xie, X. B., et al., 2014, Acquisition aperture correction in the angle domain toward true-reflection reverse time migration: Geophysics, 79(6), S241-S250.
[38] Yang, H., and Xie, X. B., 2008, Target oriented full-wave equation based illumination analysis: 75th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 2216-2220.
[39] Yoon, K , Marfurt, and Starr, W., 2004, Challenges in reverse-time migration: 74th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 1057-1060.
[40] Yoon, K, Guo, M. H., Cai, J., et al., 2011, 3D RTM angle gathers from source wave propagation direction and dip of reflector: 81th Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 3136-3140.
[41] Zhang, Q. S., and McMechan, G. A., 2011a, Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media: Geophysics,76(6), 197-206.
[42] Zhang, Q. S., and McMechan, G. A., 2011b, Direct vector-field method to obtain angle-domain common-image gathers from isotropic acoustic and elastic reverse-time migration: Geophysics, 76(5), 135-149.
[43] Zhang, Y., Xu, S., Tang, B., et al., 2010, Angle gathers from reverse time migration: The Leading Edge, 29(11), 1364-1371.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司