APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 492-504    DOI: 10.1007/s11770-017-0650-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于矢量波场逆时偏移的保幅角道集提取方法
杨佳佳1,2,栾锡武1,2,何兵寿2,3,方刚1,2,潘军1,2,冉伟民1,3,蒋陶1
1. 国土资源部油气资源和环境地质重点实验室,青岛海洋地质研究所,青岛 266071
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
3. 中国海洋大学,海底科学与探测技术教育部重点实验室,青岛 266100
Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration
Yang Jia-Jia1,2, Luan Xi-Wu1,2, He Bing-Shou2,3, Fang Gang1,2, Pan Jun1,2, Ran Wei-Min1,3, and Jiang Tao1
1. The Key Laboratory of Marine Hydrocarbon Resource and Environment Geology, Ministry of Land and Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China.
2. Function Laboratory for Marine Mineral Resource Geology and Exploration, National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266071, China.
 全文: PDF (1337 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 将偏移后的炮域偏移距道集转换为角度域共成像道集(ADCIGs)可为偏移速度分析(MVA)和叠前反演提供输入道集,并且ADCIGs是理论上没有假象的叠前反演道集,也是目前公认的精度最高的叠前反演道集。本文研究了基于矢量波场逆时偏移的弹性波保幅ADCIGs的提取方法,以保幅弹性波逆时偏移方程为基础,其核心是求取不同震源位置的纵、横波场在地下各成像点的入射角,对于转换波勘探,二者共享一个入射角,即震源纵波入射角。根据几何关系,震源纵波波场的传播角、构造的局部地层倾角之差为震源纵波入射角,震源纵波波场的传播角利用解耦后纵波场的极化向量得到,构造的局部地层倾角利用偏移叠加剖面的复波数得到。对纵、横波的共炮点偏移道集按入射角重新排列即可得到各自的ADCIGs。文中利用水平层状介质模型、倾斜层状介质模型、Marmousi-II弹性波部分模型和实测资料验证了算法的有效性,计算结果表明,本文方法计算的纵、横波角度具有较高的精度,提取的角道集具有较好的振幅保真性,能够为MVA和叠前反演提供可靠的输入道集。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词弹性波   逆时偏移   矢量波场   角道集   保幅偏移     
Abstract: Angle-domain common-image gathers (ADCIGs) transformed from the shot-domain common-offset gathers are input to migration velocity analysis (MVA) and prestack inversion. ADCIGs are non-illusion prestack inversion gathers, and thus, accurate. We studied the extraction of elastic-wave ADCIGs based on amplitude-preserving elastic-wave reverse-time migration for calculating the incidence angle of P- and S-waves at each image point and for different source locations. The P- and S-waves share the same incident angle, namely the incident angle of the source P-waves. The angle of incidence of the source P-wavefield was the difference between the source P-wave propagation angle and the reflector dips. The propagation angle of the source P-waves was obtained from the polarization vector of the decomposed P-waves. The reflectors’ normal direction angle was obtained using the complex wavenumber of the stacked reverse-time migration (RTM) images. The ADCIGs of P- and S-waves were obtained by rearranging the common-shot migration gathers based on the incident angle. We used a horizontally layered model, the graben medium model, and part of the Marmousi-II elastic model and field data to test the proposed algorithm. The results suggested that the proposed method can efficiently extract the P- and S-wave ADCIGs of the elastic-wave reverse-time migration, the P- and S-wave incident angle, and the angle-gather amplitude fidelity, and improve the MVA and prestack inversion.
Key wordsElastic wave   reverse-time migration   vector wavefield   angle-domain common-image gathers   amplitude-preserving migration   
收稿日期: 2017-08-26;
基金资助:

本研究由青岛海洋国家实验室开放基金(编号:QNLM2016ORP0206),国家重大科技专项资助项目(编号:2016ZX05027-002),中国博士后科学基金(编号:2017M612219),国家重点研发计划(编号:2017YFC0306706, 2017YFC0307400),青岛海洋国家实验室主任基金(编号:QNLM201708),国家自然科学基金资助项目(编号:41674118,41504109,41506084),山东省自然科学基金(编号:ZR2016DB10),国家海洋局海底重点实验室基金(编号:KLSG1603)和青岛市博士后应用研究项目(编号:2016238)联合资助。

引用本文:   
. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology, theory and methods: W. H. Freeman and Co, 63-68.
[2] Biondi, B., and Symes, W. W., 2004, Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging: Geophysics, 69(5), 1283-1298.
[3] Cerveny´, V., 2001, Seismic ray theory: Cambridge University Press, USA, 17-18.
[4] Dickens, A., and Winbow, G. A., 2011, RTM angle gathers using Poynting vectors: 81st Ann. Internat. Mtg., Soc. Expi.Geophys., Expanded Abstracts, 3109-3113.
[5] Fomel, S., 2002, Applications of plane-wave destructor filters: Geophysics, 67(6), 1946-1960.
[6] Loewenthal, D., and Mulfti, I. R., 1983, Reverse time migration in spatial frequency domain: Geophysics, 46(3), 627-635.
[7] McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values: Geophysical Prospecting, 31(2), 413-420.
[8] Pinsky, M., 2009, Introduction to Fourier analysis and wavelets: American Mathematics Society.
[9] Sava, P., and Fomel, S., 2006a, Time-shift imaging condition in seismic migration: Geophysics, 71(6), S209-S217.
[10] Sava, P., and Fomel, S., 2006b, Time-shift imaging condition for converted waves: 76th Ann. Internat. Mtg., Soc. Expi.Geophys., Expanded Abstracts, 2460-2464.
[11] Sava, P., and Fomel, S., 2005a, Wave-equation common-angle gathers for converted waves: 75th Ann. Internat. Mtg., Soc. Expi.Geophys., Expanded Abstracts, 947-950.
[12] Sava, P., and Fomel, S., 2005b, Coordinate-independent angle-gathers for wave equation migration: 75th Ann. Internat. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 2052-2055.
[13] Sava, P., and Fomel, S., 2003, Angle-domain common-image gathers by wavefield continuation methods: Geophysics, 68(3), 1065-1074.
[14] Sun, R., McMechan, G. A., Hsian, H., and Chow, J., 2004, Separating P and S-waves in prestack 3D elastic seismograms using divergence and curl: Geophysics, 69(1), 286-297.
[15] Sun, R., Chow, J., and Chen, K. J., 2001, Phase correction in separating P- and S-waves in elastic data: Geophysics, 66(5), 1515-1518.
[16] Sun, R., 1999, Separating P- and S-waves in a prestack 2-dimensional elastic seismogram: 61st Conference, European Association of Geoscientists and Engineers, Extended Abstracts, 6-23.
[17] Sun, R., McMechan, G. A., and Chuang, H., 2011, Amplitude balancing in separating P and S-waves in 2D and 3D elastic seismic data: Geophysics, 76(3), S103-S113.
[18] Tang, C., McMechan, G. A., and Wang, D., 2017, Two algorithms to stabilize multidirectional Poynting vectors for calculating angle gathers from reverse time migration: Geophysics, 82(2), S129-S141.
[19] Vyas, M., Nichols, D., and Mobley, E., 2011, Efficient RTM angle gathers using source directions: 81st Ann. Internat. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 3104-3108.
[20] Wang, B. L., Gao, J. H., Chen, W. C., et al., 2013, Extracting efficiently angle gathers using Poynting vector during reverse time migration: Chinese Journal of Geophysics (in Chinese), 56(1), 262-268.
[21] Whitmore, N. D., 1983, Iterative depth migration by backward time propagation: 53th Ann. Internat. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 382-385.
[22] Xie, X., and Yang, H., 2008, A full-wave equation based seismic illumination analysis method: 70th Ann. Internat. Conference and Exhibition, EAGE, Extended Abstracts, 284-288.
[23] Xie, X., and Wu, R. S., 2002, Extracting angle domain information from migrated wavefields: 72nd Ann. Internat. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 1360-1363.
[24] Xu, S., Zhang, Y., and Tang, B., 2011, 3D angle gathers from reverse time migration: Geophysics, 76(2), S77-S92.
[25] Xu, S., Zhang, Y., and Lambaré, G., 2010, Antileakage Fourier transform for seismic data regularization in higher dimension: Geophysics, 75(6), WB113-WB120.
[26] Xu, S., Chauris, H., Lambaré, G., et al., 2001, Common-angle migration: A strategy for imaging complex media: Geophysics, 66(6), 1877-1894.
[27] Xu, S., Chauris, H., Lambare, G., et al., 1998, Common angle image gather - A strategy for imaging complex media: 68th Ann. Internat. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 1538-1541.
[28] Yan, R., and Xie, X., 2012, An angle-domain imaging condition for elastic reverse time migration and its application to angle gather extraction: Geophysics, 77(5), S105-S115.
[29] Yan, R., and Xie, X., 2011, Angle gather extraction for acoustic and isotropic elastic RTM: 81st Ann. Internat. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 3141-3146.
[30] Yang, J. J., Luan, X. W., Fang, G., et al., 2016, Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation: Applied Geophysics, 13(3), 500-510.
[31] Yoon, K., Guo, M., Cai, J., et al., 2011, 3D RTM angle gathers from source wave propagation direction and dip of reflector: 81st Ann. Internat. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 1057-1060.
[32] Yoon, K., and Marfurt, K. J., 2006, Reverse-time migration using the Poynting vector: Exploration Geophysics, 37(1), 102-107.
[33] Zhang, Q., and McMechan, G. A., 2011a, Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media: Geophysics, 76(6), S197-S206.
[34] Zhang, Q., and McMechan, G. A., 2011b, Direct vector-field method to obtain angle-domain common-image gathers from isotropic acoustic and elastic reverse-time migration: Geophysics, 76(5), WB135-WB149.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[3] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[4] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[5] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[6] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[7] 王建,孟小红,刘洪,郑婉秋,贵生. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
[8] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[9] 杨佳佳,栾锡武 ,方刚,刘欣欣,潘军,王小杰. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
[10] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[11] 王为中, 胡天跃, 吕雪梅, 秦臻, 李艳东, 张研. 弹性波变阶数旋转交错网格数值模拟[J]. 应用地球物理, 2015, 12(3): 389-400.
[12] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
[13] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[14] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[15] 赵岩, 刘洋, 任志明. 基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移[J]. 应用地球物理, 2014, 11(1): 50-62.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司