Physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China
Li Qiong1, Chen Jie1, and He Jian-Jun2
1. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China.
2. College of Information Science & Technology, Chengdu University of Technology, Chengdu 610059, China.
Abstract:
In this study, we experimentally established the relationship between physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China using representative coal samples collected from three different mines via the rock mechanics testing system (MTS). We analyzed the organic macerals, vitrinite reflectance, and microstructure of 11 coal samples using petrography and scanning electron microscopy (SEM). The experimental results suggest that (1) the elastic parameters can be described by linear equations, (2) both P- and S-wave velocities display anisotropy, (3) the anisotropy negatively correlates with vitrinite reflectance, and (4) the acoustic velocities and Young’s modulus are negatively correlated with the volume of micropores. The derived empirical equations can be used in the forward modeling and seismic inversion of physical properties of coal for improving the coal-bed methane (CBM) reservoir characterization.
. Physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(4): 481-491.
[1]
Castagna, J. P., Batzle, M. L., and Kan, T. K., 1993, Rock physics—The link between rock properties and AVO response: in J. P. Castagna and M. M. Backus, eds., Offset-dependent reflectivity—Theory and practice of AVO analysis: SEG Investigations in Geophysics, 8, 135−171.
[2]
Chen, X. P., Huo, Q. M., Lin, J. D., et al., 2013, The inverse correlations between methane content and elastic parameters of coal-bed methane reservoirs: Geophysics, 78(4), D237−D248.
[3]
Dirgantara, F., Batzle, M. L., and Curtis, J. B., 2011, Maturity characterization and ultrasonic velocities of coals: 81st Annual International Meeting, SEG, Expanded Abstracts, 2308−2312.
[4]
Gray, D., 2005, Seismic anisotropy in coal beds: 75th Annual International Meeting, SEG, Expanded Abstracts, 142−145.
[5]
Greenhalgh, S. A., and Emerson, D. W., 1986, Elastic properties of coal measure rocks from the Sydney Basin, New South Wales: Exploration Geophysics, 17(3), 157−163.
[6]
Li, Q., He, J. J., and Cao, J., 2013, Physical characteristics of coalbed methane reservoir in Heshun Area of Qinshui Basin: Oil Geophysical Prospecting (in Chinese), 48(5), 734−739.
[7]
Lwin, M. J., 2011, The effect of different gases on the ultrasonic response of coal: Geophysics, 76(5), E155−E163.
[8]
Meng, Z. P., Zhang, J. C., and Wang, R., 2011, In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin: International Journal of Rock Mechanics & Mining Sciences, 48(1), 122−131.
[9]
Morcote, A., Mavko, G., and Prasad, M., 2010, Dynamic elastic properties of coal: Geophysics, 75(6), E227−E234.
[10]
Pan, J. N., Meng, Z. P., Hou, Q. L., Ju, Y. W., and Cao, Y. X., 2013, Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition: Journal of Structural Geology, 54, 129−135.
Wang, H. C., Pan, J. N., Wang, S., and Zhu, H. T., 2015, Relationship between macro-fracture density, P-wave velocity, and Permeability of coal: Journal of Applied Geophysics, 117, 111−117.
[13]
Wu, H. B., Dong, S. H., Li, D. H. Huang, Y. P., and Qi, X. M., 2015, Experimental study on dynamic elastic parameters of coal samples: International Journal of Mining Science and Technology, 25(3), 447−452.
[14]
Yao, Q. L., and Han, D. H., 2008, Acoustic properties of coal from lab measurement: 78th Annual International Meeting, SEG, Expanded Abstracts, 1815−1819.
[15]
Yu, G., Vozoff, K., and Durney, D. W., 1993, The influence of confining pressure and water saturation on dynamic elastic properties of some Permian coals: Geophysics, 58(1), 30−38.
[16]
Yushendri, Y. F., Sukotjo, A., Raguwanti, R., Widarto, D. S., and Nurhandoko, B. E. B., 2013, Seismic rock physics of the South Sumatra basin coal, Indonesia: Proceeding of the 11th SEGJ International Symposium, 402−406.