APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (4): 481-491    DOI: 10.1007/s11770-017-0651-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
沁水盆地太原组煤层岩石物理性质、镜质组反射率与微观结构实验研究
李琼1,陈杰1,何建军2
1. 成都理工大学地球物理学院,成都 610059
2. 成都理工大学信息科学与技术学院,成都 610059
Physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China
Li Qiong1, Chen Jie1, and He Jian-Jun2
1. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China.
2. College of Information Science & Technology, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (1142 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了分析沁水盆地太原组煤层岩石物理性质、镜质组反射率与微观结构之间的关系,采集了三个不同煤矿井下的11个煤岩样品,利用MTS岩石物理参数测试系统对煤样进行弹性参数测试,通过薄片鉴定和扫描电镜对11个煤样的有机显微组分、镜质组最大反射率和微观结构特征进行了分析。对上述实验结果进行交会分析发现:一些弹性参数之间具有线性关系;纵波速度与横波速度均具有各向异性特征,其各向异性特征与镜质组最大反射率有良好的负相关性;纵横波速度、杨氏模量与微孔含量呈负相关关系。获得的煤岩岩石物理参数之间的关系构成了煤岩地震岩石物理建模和煤层气地震反演技术的基础。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词煤岩   超声波测试   微观结构     
Abstract: In this study, we experimentally established the relationship between physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China using representative coal samples collected from three different mines via the rock mechanics testing system (MTS). We analyzed the organic macerals, vitrinite reflectance, and microstructure of 11 coal samples using petrography and scanning electron microscopy (SEM). The experimental results suggest that (1) the elastic parameters can be described by linear equations, (2) both P- and S-wave velocities display anisotropy, (3) the anisotropy negatively correlates with vitrinite reflectance, and (4) the acoustic velocities and Young’s modulus are negatively correlated with the volume of micropores. The derived empirical equations can be used in the forward modeling and seismic inversion of physical properties of coal for improving the coal-bed methane (CBM) reservoir characterization.
Key wordsCoal   physical properties ultrasonic testing   microstructure   
收稿日期: 2017-08-31;
基金资助:

本研究由国家自然科学基金(编号:41274129)和国家科技重大专项(编号:2008ZX05035-001-006HZ和2011ZX05035-005-003HZ)联合资助。

引用本文:   
. 沁水盆地太原组煤层岩石物理性质、镜质组反射率与微观结构实验研究[J]. 应用地球物理, 2017, 14(4): 481-491.
. Physical properties, vitrinite reflectance, and microstructure of coal, Taiyuan Formation, Qinshui Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(4): 481-491.
 
[1] Castagna, J. P., Batzle, M. L., and Kan, T. K., 1993, Rock physics—The link between rock properties and AVO response: in J. P. Castagna and M. M. Backus, eds., Offset-dependent reflectivity—Theory and practice of AVO analysis: SEG Investigations in Geophysics, 8, 135−171.
[2] Chen, X. P., Huo, Q. M., Lin, J. D., et al., 2013, The inverse correlations between methane content and elastic parameters of coal-bed methane reservoirs: Geophysics, 78(4), D237−D248.
[3] Dirgantara, F., Batzle, M. L., and Curtis, J. B., 2011, Maturity characterization and ultrasonic velocities of coals: 81st Annual International Meeting, SEG, Expanded Abstracts, 2308−2312.
[4] Gray, D., 2005, Seismic anisotropy in coal beds: 75th Annual International Meeting, SEG, Expanded Abstracts, 142−145.
[5] Greenhalgh, S. A., and Emerson, D. W., 1986, Elastic properties of coal measure rocks from the Sydney Basin, New South Wales: Exploration Geophysics, 17(3), 157−163.
[6] Li, Q., He, J. J., and Cao, J., 2013, Physical characteristics of coalbed methane reservoir in Heshun Area of Qinshui Basin: Oil Geophysical Prospecting (in Chinese), 48(5), 734−739.
[7] Lwin, M. J., 2011, The effect of different gases on the ultrasonic response of coal: Geophysics, 76(5), E155−E163.
[8] Meng, Z. P., Zhang, J. C., and Wang, R., 2011, In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin: International Journal of Rock Mechanics & Mining Sciences, 48(1), 122−131.
[9] Morcote, A., Mavko, G., and Prasad, M., 2010, Dynamic elastic properties of coal: Geophysics, 75(6), E227−E234.
[10] Pan, J. N., Meng, Z. P., Hou, Q. L., Ju, Y. W., and Cao, Y. X., 2013, Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition: Journal of Structural Geology, 54, 129−135.
[11] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51(10), 1954−1966.
[12] Wang, H. C., Pan, J. N., Wang, S., and Zhu, H. T., 2015, Relationship between macro-fracture density, P-wave velocity, and Permeability of coal: Journal of Applied Geophysics, 117, 111−117.
[13] Wu, H. B., Dong, S. H., Li, D. H. Huang, Y. P., and Qi, X. M., 2015, Experimental study on dynamic elastic parameters of coal samples: International Journal of Mining Science and Technology, 25(3), 447−452.
[14] Yao, Q. L., and Han, D. H., 2008, Acoustic properties of coal from lab measurement: 78th Annual International Meeting, SEG, Expanded Abstracts, 1815−1819.
[15] Yu, G., Vozoff, K., and Durney, D. W., 1993, The influence of confining pressure and water saturation on dynamic elastic properties of some Permian coals: Geophysics, 58(1), 30−38.
[16] Yushendri, Y. F., Sukotjo, A., Raguwanti, R., Widarto, D. S., and Nurhandoko, B. E. B., 2013, Seismic rock physics of the South Sumatra basin coal, Indonesia: Proceeding of the 11th SEGJ International Symposium, 402−406.
[1] 张杏莉,贾瑞生,卢新明,彭延军,赵卫东. 爆破震动与煤岩破裂微震信号辨识研究[J]. 应用地球物理, 2018, 15(2): 280-289.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司