APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 449-458    DOI: 10.1007/s11770-017-0639-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
地面电磁探测(SEP)系统集成及优化野外探测试验
底青云,付长民,安志国,许诚,王亚璐,王中兴
中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
Field testing of the surface electromagnetic prospecting system
Di Qing-Yun1, Fu Chang-Min1, An Zhi-Guo1, Xu Cheng1, Wang Ya-Lu1, and Wang Zhong-Xing1
1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
 全文: PDF (1206 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了检验自主研发的地面电磁探测(SEP)系统的性能,在辽宁兴城及内蒙阿拉善等地开展了野外系统集成、仪器性能比对及大规模生产性探测试验。通过与世界先进仪器的发射波形、接收电场、磁场、视电阻率、阻抗相位及反演结果的全方位多角度对比,表明自主研发的SEP系统数据与进口高端仪器的数据基本一致。大规模野外探测试验结果表明,SEP系统性能是稳定的,同时具有轻便、灵敏度高及易操作等优点,便于实际野外勘探生产。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地面电磁法仪器   电磁法勘探   SEP   CSAMT     
Abstract: To test the performance of the Chinese whole-surface electromagnetic prospecting (SEP) system, system integrations, instrument performances, and large-scale production viabilities in Liaoning province and Inner Mongolia were measured via extensive field tests. Resultant electric fields, magnetic fields, apparent resistivities, impedance phases, and inversion profiles compared favorably with results of commercial equipment from other countries. The inversion results agreed well with the geologic information from boreholes. Field tests showed that the SEP system is stable, reliable, lightweight, and easy to operate, making it suitable and ready for real-field exploration.
Key wordsground electromagnetic instrument   electromagnetic sounding system   SEP   CSAMT   
收稿日期: 2015-03-03;
基金资助:

本研究由国家公益专项“深部探测技术与实验研究”课题“地面电磁探测系统研制”(编号:SinoProbe-09-02, 201011079)、国家重大科研装备研制项目“深部资源探测核心装备研发”子项目“多通道大功率电法勘探仪器”(编号:ZDYZ2012-1-05)和中国科学院战略性先导科技专项(编号:XDA14050100)资助。

引用本文:   
. 地面电磁探测(SEP)系统集成及优化野外探测试验[J]. 应用地球物理, 2017, 14(3): 449-458.
. Field testing of the surface electromagnetic prospecting system[J]. APPLIED GEOPHYSICS, 2017, 14(3): 449-458.
 
[1] Bastani, M., Malehmir, A., and Ismail, N., 2009, Delineating hydrothermal stockwork copper deposits using controlled-source and radio-magnetotelluric methods: A case study from northeast Iran: Geophysics, 74(5), B167−B181.
[2] Chen, K., Wei, W. B., Deng, M., et al., 2015, A new magnetotelluric receiver: Geophysical and Geochemical Exploration, 39(4), 780-785.
[3] Constable, S., Orange, A. S., Hoversten, G. M., et al., 1998, Marine magnetotellurics for petroleum exploration Part I: A sea-floor equipment system: Geophysics, 63(3), 816−825.
[4] Constable, S., 2010, Ten years of marine CSEM for hydrocarbon exploration: Geophysics, 75(5), A67−A81.
[5] Di, Q. Y., Fang, G. Y., and Zhang, Y. M., 2013, Research of the surface electromagnetic prospecting (SEP) system: Chinese Journal Geophysics, 56(11), 3629−3639
[6] Grayver, A.V., Streich, R., Ritter, O., 2014, 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation: Geophysics, 79(2), E101−E114.
[7] He, J. S., 1998. Development and prospect of electrical prospecting method: Journal of Geophysics (in Chinese), 40(S1), 308-316.
[8] He, Z. X., Kurt, S., Yu, G., and Wang, Z. G., 2008, On reservoir boundary detection with marine CSEM: Applied Geophysics, 5(3), 181−188
[9] Ichiki, M., Ogawa, Y., Kaida, T., et al., 2015, Electrical image of subduction zone beneath northeastern Japan: Journal of Geophysical Research-Solid Earth, 120(12), 7937−7965
[10] Korja, T., Smirnov, M., Pedersen, L. B., et al., 2008, Structure of the central scandinavian caledonides and the underlying precambrian basement, new constraints from magnetotellurics: Geophysical Journal International, 175, 55−69
[11] Lin, P. R., Zheng, C. J., Shi, F. S., et al., 2006, The Research of Integrated Electromagnetic Method System: Acta Geologica Sinica, 80(10), 1539−1548.
[12] Nagighian, M. N., and Macnae, J. C., 1991, In Electromagnetic Methods in Applied Geophysics. Volume 2: Applications, Part B., ed. M. N. Nabighian. Tulsa: Society of Exploration Geophysicists, 427-520.
[13] Patro, P. K., and Egbert, G. D., 2011, Application of 3D inversion to magnetotelluric profile data from the Deccan Volcanic Province of Western India: Physics of the Earth and Planetary Interiors, 187, 33−46.
[14] Rees, N., Carter, S., and Heinson, G., 2016, Bayesian inversion of CSEM and magnetotelluric data: Geophysics, 77(1), E33−E42.
[15] Routh, P. S., and Oldenburg, D. W., 1999, Inversion of controlled-source audio-frequency magnetoteluric data for a horizontal-layered earth: Geophysics, 1999, 64(6), 1689−1697.
[16] Roy, K. K., Verma, S. K., Mallick, K., 1999, Deep electromagnetic exploration: Springer Berlin Heidelberg.Singh, A., and Sharma, S. P., 2015, Fast imaging of subsurface conductors using very low-frequency electromagnetic data: Geophysical Prospecting, 63(6), 1355−1370.
[17] Singh, A., and Sharma, S. P., 2015, Fast imaging of subsurface conductors using very low-frequency electromagnetic data: Geophysical Prospecting, 63(6), 1355−1370.
[18] Tang, J. T., Ren, Z. R., Zhou, C., et al., 2015, Frequency-domain electromagnetic methods for exploration of the shallow subsurface: A review: Chinese Journal Geophysics, 58(8), 2681−2705.
[19] Teng, J. W., 2010, Strengthing exploration of metallic minerals in the second depth space of the crust, Accelerating development and industrialization of new geophysical technology and instrumental equipment: Progress in Geophysics (in Chinese), 25(3), 729−748.
[20] Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005, Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data: Nature, 438(7064), 78−81.
[21] Zhdanov, M. S., 2015, Inverse theory and applications in geophysics: Elsevier, Amsterdam, 615−645.
[22] Zonge, K. L., and Hughes, L. H., 1991, Controlled-source audio-frequency magnetotellurics. In Electromagnetic Methods in Applied Geophysics. Volume 2: Applications, Part B., ed. M. N. Nabighian. Tulsa: Society of Exploration Geophysicists, 713-809.
[1] 翁爱华, 刘云鹤, 殷长春, 贾定宇. 一种消除源奇异性的电磁格林函数计算框架[J]. 应用地球物理, 2016, 13(1): 25-36.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司