APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 441-448    DOI: 10.1007/s11770-017-0633-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
广域电磁法在我国南方海相页岩气勘探中的应用
杨学立1,李博1,彭传圣1,杨洋2
1. 中国华电集团清洁能源有限公司,北京 100160
2. 中南大学地球科学及信息物理学院,湖南长沙 410083
Application of a wide-field electromagnetic method to shale gas exploration in South China
Yang Xue-Li1, Li Bo1, Peng Chuan-Sheng1, and Yang Yang2
1. China Huadian Engineering Co., LTD, Beijing 100160, China.
2. School of Geoscience and Info-Physics, Central South University, Changsha 410083, China.
 全文: PDF (1054 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在中国页岩气勘探开发仍处于起步阶段,为了降低勘探风险和勘探成本,选择广域电磁法具有分辨率高,抗干扰能力强,勘探深度大,工作效率高等优势。我们选择湖南花垣区块叭岩向斜作为试验区,进行广域电磁法勘探。首先我们在试验区系统地采集了相关岩石标本,分析了岩石标本的电阻率和极化率参数,并针对地质条件建立了系列二维模型,以研究广域电磁法对不同地质结构的勘探能力,最后研究了页岩含碳量(TOC)与电阻率和极化率之间的相关性,找到了识别目标层电阻率和极化率参数的阈值,并据此划分了页岩气勘探有利区。通过在有利区内部署的钻井揭露结果表明,广域电磁法可很好地识别该地区的地下地质结构、断层,并确定目标层的分布、深度和厚度。通过对岩石的电阻率、极化率和有机碳含量三者之间的相关性分析,有助于进一步评估页岩品质并选择页岩气开发有利区。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词广域电磁法(WFEM)   页岩气   电阻率   极化率   总有机碳含量(TOC)     
Abstract: In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built  A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.
Key wordswide-field electromagnetic method   shale gas   resistivity   induced polarization   total organic carbon   
收稿日期: 2017-02-17;
基金资助:

本研究由国家重大专项课题“来凤咸丰及鹤峰区块复杂构造区海相页岩气勘查评价应用试验”(编号:2016ZX05034004-004)和中国华电工程(集团)有限公司《广域电磁法在湘西北地区页岩气勘探开发中的应用》(编号:CHEC-KJ-2014-Z10)联合资助。

引用本文:   
. 广域电磁法在我国南方海相页岩气勘探中的应用[J]. 应用地球物理, 2017, 14(3): 441-448.
. Application of a wide-field electromagnetic method to shale gas exploration in South China[J]. APPLIED GEOPHYSICS, 2017, 14(3): 441-448.
 
[1] Conti, J. J., Holtberg, P. D., and Beamon, J. A., et al., 2013, Annual Energy Outlook 2013 with Projections to 2040. US Energy Information Agency.
[2] Di, Q., and Wang, R., 2008, CSAMT forward modeling and inversion and its application: Science Press, Beijing.
[3] Goldstein, M. A., and Strangway, D. W., 1975, Audio-frequency magnetotellurics with a grounded electric dipole source: Geophysics, 40, 669−683.
[4] He, J., 2010, Wide field electromagnetic sounding methods: Journal of Central South University, Science and Technology, 41, 1065−1072.
[5] Tang, J., and He, J., 2005, Theory and application of CSAMT method: Central South University Press, Changsha.
[6] Yin, C., and Piao, H., 1991, The definition of apparent resistivity in electromagnetic sounding methods: Geophysical & Geochemical Exploration, 15, 290−299.
[7] Zhang, S., and Zhu, G., 2006, Gas accumulation characteristics and exploration potential of marine sediments in Sichuan Basin: Acta Petrolei Sinica, 27, 1−8.
[8] Zhou, Q., Song, N., Wang, C., et al., 2014, Geological evaluation and exploration prospect of Huayuan shale gas block in Hunan Province: Natural Gas Geoscience, 25, 130−140.
[9] Zonge, K. L., and Hughes, L. J., 1991, Controlled source audio-frequency magnetotellurics. Electromagnetic Methods in Applied Geophysics, Vol. 2, edited by Nabighian, M.N., 713−809. Society of Exploration Geophysicists.
[1] 郭志华,宋延杰,王超,唐晓敏. 含黄铁矿泥质砂岩电阻率频散规律实验研究与校正方法*[J]. 应用地球物理, 2019, 16(1): 50-60.
[2] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[3] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[4] 郭志华,宋延杰,唐晓敏,王超. 基于差分方程和通用阿尔奇方程的含黄铁矿混合泥质砂岩电阻率模型[J]. 应用地球物理, 2018, 15(2): 208-221.
[5] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[6] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[7] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[8] 杨海燕,李锋平,岳建华,郭福生,刘旭华,张华. 瞬变电磁法圆锥型场源特征与电感效应[J]. 应用地球物理, 2017, 14(1): 165-174.
[9] 白泽,谭茂金,张福莱. 不同激励源井地电位成像技术三维正反演方法研究[J]. 应用地球物理, 2016, 13(3): 437-448.
[10] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[11] 江沸菠,戴前伟,董莉. 基于剪枝贝叶斯神经网络的电阻率成像非线性反演[J]. 应用地球物理, 2016, 13(2): 267-278.
[12] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
[13] 张志勇, 谭捍东, 王堃鹏, 林昌洪, 张斌, 谢茂笔. 复电阻率法二维数据空间反演并行算法研究[J]. 应用地球物理, 2016, 13(1): 13-24.
[14] 徐冬, 胡祥云, 单春玲, 李睿恒. 西南山区典型滑坡体时移电阻率动态监测试验研究[J]. 应用地球物理, 2016, 13(1): 1-12.
[15] 李术才, 聂利超, 刘斌, 宋杰, 刘征宇, 苏茂鑫, 徐磊, 孙怀凤. 基于空间形态先验约束的三维电阻率反演成像方法[J]. 应用地球物理, 2013, 10(4): 361-372.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司