APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 431-440    DOI: 10.1007/s11770-017-0627-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维时间域航空电磁任意各向异性正演模拟
黄威1,3,贲放1,3,殷长春2,孟庆敏1,李文杰1,廖桂香1,吴珊1,西永在1
1. 中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000
2. 吉林大学地球探测科学与技术学院,吉林长春 130026
3. 国土资源部地球物理电磁法探测技术重点实验室,河北廊坊 065000
Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys
Huang Wei1,3, Ben Fang1,3, Yin Chang-Chun2, Meng Qing-Min1, Li Wen-Jie1, Liao Gui-Xiang1, Wu Shan1, and Xi Yong-Zai1
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Science, Langfang 065000, China.
2. College of Geo-exploration Sciences and Technology, Jilin University, Changchun 130021, China.
3. Laboratory of geophysical Electromagnetic Probing Technologies, Ministry of land and Resources, Langfang 065000, China.
 全文: PDF (1014 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在自然界中地层会呈现出各向异性特征,各向异性介质的研究有助于资料解释和认识地球动力学的过程,但当前数据处理中多数使用各向同性理论解释各向异性构造,因而对电磁资料解释造成了一定的偏差。当前,时间域航空电磁法关于各向异性的解释仍局限于一维情况,且相应的三维数值模拟也正处于研究中,因此本文针对任意各向异性介质中三维时间域航空电磁法进行正演模拟。将各向同性介质的电导率经过坐标旋转后,得到任意各向异性介质的电导率张量,将其引入到麦克斯韦方程组中,采用矢量有限元法的规则网格对求解区域进行剖分,利用直接求解器对总体合成的线性方程组进行求解。通过与解析解对比,验证了算法的精确性和可行性;同时与各向同性情况进行对比,通过响应的分布特征及幅值变化分析任意各向异性对三维时间域航空电磁响应的影响,得出在不同情况下各向异性对时间域航空电磁响应的影响情况存在较大差异。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词三维时间域航空电磁法   任意各向异性   矢量有限元法     
Abstract: Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell’s equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.
Key wordsThree-dimensional time-domain airborne electromagnetic   arbitrary anisotropy   vector finite element   
收稿日期: 2016-11-15;
基金资助:

本研究由物化探所中央级公益性科研院所基本科研业务费专项资金项目(编号:AS2017J06、AS2017Y04和AS2016J10)、江苏沿岸滩涂区无人机航磁调查(编号:DD20160151-03)、国家重点研发计划重点专项(编号:2017YFC0601900)、国家自然科学基金重点项目(编号:41530320)、面上项目(编号:41274121)和青年项目(编号:41404093)联合资助。

引用本文:   
. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
 
[1] Amestoy, P. R., Duff, I. S., L'Excellent, J. Y., et al., 2001, A fully asynchronous multifrontal solver using distributed dynamic scheduling: SIAM Journal on Matrix Analysis & Applications, 23(1), 15-41.
[2] Auken, E., and Christiansen, A. V., 2004, Layered and laterally constrained 2D inversion of resistivity data: Geophysics, 69, 752-761.
[3] Avdeev, D., Kuvshinov, A. V., Oankratov, O. V., et al., 1998, Three-dimensional frequency-domain modeling of airborne electromagnetic responses: Exploration Geophysics, 29(1/2), 111-119.
[4] Fan, C. S., 2013, Research on complex resistivity forward and inversion eith finite element method and its application (in Chinese): PhD thesis, Jilin University.
[5] Haber, E., and Schwarzbach, C., 2014, Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple Oc Tree meshes: Inverse Problems, 30(30), 055011.
[6] Hu, Y. C., Li, T. L., Fan, C. S., et al., 2015, Three-dimensional tensor controlled-source electromagnetic modeling based on the vector finite-element method: Applied Geophysics, 12(1), 35-46.
[7] Huang, W., Yin, C. C., Ben, F., Liu, Y. H., Chen, H., and Cai, J., 2016, 3D Forward modeling for frequency AEM by vector finite element: Earth Science (in Chinese), 41(2), 331-342.
[8] Huang, W., 2016, Time-domain airborne electromagnetic simulation and key technologies (in Chinese): PhD thesis, Jilin University.
[9] Jin, J. M., 1998, Electromagnetic FEM (in Chinese). Xi’an University of Electronic Science and Technology Press, Xi’an, 96.
[10] Leppin, M., 1992, Electromagnetic modeling of 3-D sources over 2-D in homogeneties in the time domain: Geophysics, 57(8), 994-1003.
[11] Li, W. B., Zeng, S. F., Li, J., Chen, X., and Wang, K., Xia, Z., 2016, 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data: Applied Geophysics, 13(1), 37-47.
[12] Liu, Y. H., and Yin, C. C., 2014, 3D anisotropic modeling for airborne EM systems using finite-difference method: Journal of Applied Geophysics, 19, 186-194.
[13] Liu, Y. H., Yin, C. C., Ren, X. Y., and Qiu, C. K., 2016, 3D parallel inversion of time-domain airborne EM data: Applied Geophysics, 13(4), 701-711.
[14] Mann, J. E., 1965, The importance of anisotropic conductivity in magnetotelluric interpretation: J. Geophys. Res., 70(12), 2940-2942.
[15] Mao, T. E., Xu, G. Y., Fan, S. Y., Zhao., M, and Sun, J. F., 1999, The dynamic evolution image and the seismogenic process of anisotropy of the resistivity: Acta Seismological Sinica (in Chinese), 21(2), 180-186.
[16] Newman, G. A., and Alumbaugh, D. L., 1995, Frequency-domain modeling of airborne electromagnetic responses using staggered finite differences: Geophysical Prospecting. 43(8), 1021-1042.
[17] Pemberton, R. H.,1962, Airborne electromagnetic in review: Geophysics, XXVII(5), 691713.
[18] Raiche, A., F., and Wilson, S. G., 2007, Practical 3D EM inversion —The P223F software suite: ASEG Extended Abstracts. (1), 1.
[19] Reddy, I. K., and Rankin, D., 1971, Magnetotelluric effect of dipping anisotropies: Geophysical Prospecting, 19, 84-97.
[20] Ren, Z. Y., and Tang, J. T., 2014, A goal-oriented adaptive finite-element approach for multi-electrode resistivity system: Geophys. J. Int., 199, 136−145.
[21] Ren, Z. Y., Kalscheuer, T., Greenhalgh, S., and Maurer, H., 2014, A finite-element-based domain-decomposition approch for plane wave 3D electromagnetic modeling. Geophysics, 79(6), E255-E268.
[22] Ruan, A. G., and Li, Q. H., 2000, The temporal evolution of shear-wave splitting and geoelectrical anisotropy during Yongdeng earthquake: Earthquake Research in China(in Chinese), 16(4), 316-326.
[23] Sugeng, F., Raiche, A., and Rij, O. L., 1993, Comparing the time-domain EM response of 2-D and elongated 3-D conductors excited by a rectangular loop source: Journal of Geomagnetism and Geoelectricity, 45(9), 873-885.
[24] Wang, W., 2013, Study of 3D arbitrary anisotropic resistivity modeling and interpretation using unstructured finite element methods:. PhD thesis, University of science and technology of China.
[25] Yang, C. F., and Lin, C. Y., 1997, MT inversion made for anisotropic medium in GANSU and it’s neighbouring areas and deep crustal stress field and deformation belt in the same areas: Inland Earthquake (in Chinese), 11(2), 143-147.
[26] Yin, C. C., and Fraser, D. C., 2004, The effect for the electrical anisotropy on the response of helicopter-borne frequency-domain electromagnetic systems: Geophys. Prospect, 52, 339-416.
[27] Yin, C. C., Huang, W., and Ben, F., 2013, The full-time electromagnetic modeling for time-domain airborne electromagnetic systems: Chinese J. Geophys. (in Chinese), 56(9), 3153-3162.
[28] Yin, C. C., Qi, Y. F., and Liu, Y. H., 2016, 3 D time-domain airborne EM modeling for an arbitrarily anisotropic earth: Geophiscs, 131, 163-178.
[29] Zhang, Z. Y., Tan, H. D., Wang, K. P., Lin, C. H.,Zhang, B. and Xie, M. B., 2016, Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space: Applied Geophysics, 13(1), 13-24.
[1] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司