APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 407-418    DOI: 10.1007/s11770-017-0630-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种基于拟相位信息目标泛函的反射波波形反演方法
崔超1,2,黄建平1,2,李振春1,2,廖文远3,关哲4
1. 中国石油大学(华东) 地球科学与技术学院,青岛 266580
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
3. 卡尔加里大学数学与统计学系,阿尔伯塔 T2N1N4
4. 莱斯大学地球科学系,德克萨斯 77005
Reflection full-waveform inversion using a modified phase misfit function
Cui Chao1,2, Huang Jian-Ping1,2, Li Zhen-Chun1,2, Liao Wen-Yuan3, and Guan Zhe4
1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China.
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. Department of Mathematics and Statistics, University of Calgary, Alberta, Canada T2N1N4.
4. Department of Earth Science, Rice University, Houston, Texas, 77005, Unite States.
 全文: PDF (962 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 反射波波形反演(RFWI)通过交替更新模型的中低波数和高波数成分,为传统的全波形反演(FWI)提供较为准确的初始速度场。但是由于低频信息的缺失和振幅信息的复杂性,传统的反射波波形反演存在极强的非线性。将振幅与相位信息的分离能够有效提高RFWI的线性程度, 然而传统的相位计算方法具有严重的相位跳变(wrapping)问题。基于此,本文首先给出一种拟相位信息的计算方法,利用地震数据的包络信息,以避免传统相位信息的跳变问题。然后利用拟相位信息构建反射波波形反演的目标泛函,并给出相应的伴随震源和梯度表达式。理论分析证明了拟相位信息的计算方法能够保证相位信息的稳定和准确性,并且基于拟相位信息的目标泛函具有更广的全局收敛域。将本文方法应用到部分Sigsbee2A模型并与传统的目标泛函对比结果表明:与传统的全波形反演方法相结合,新的RFWI能够在初始模型不准确情况下得到较为准确的反演结果。除此之外,本文方法对含噪音数据和低频数据缺失情况具有一定的适用性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词反射波波形反演   基于拟相位信息目标泛函   核函数分解     
Abstract: Reflection full-waveform inversion (RFWI) updates the low- and high-wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.
Key wordsReflection full-waveform inversion   full-waveform inversion   misfit function   
收稿日期: 2016-11-15;
基金资助:

本研究由泰山学者青年人才工程专项基金;国家“973”课题(编号:2014CB239006)、国家自然科学基金(编号:41104069和41274124)和国家油气重大专项课题(编号:2016ZX05014001和2016ZX05002)联合资助。

引用本文:   
. 一种基于拟相位信息目标泛函的反射波波形反演方法[J]. 应用地球物理, 2017, 14(3): 407-418.
. Reflection full-waveform inversion using a modified phase misfit function[J]. APPLIED GEOPHYSICS, 2017, 14(3): 407-418.
 
[1] Alan, R. L., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53(11), 1425−1436.
[2] Bozda?, E., Trampert, J., and Tromp, J., 2011, Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements: Geophys. J. Int., 185(2), 845−870.
[3] Bunks, C., Saleck, F. M., Zaleski, S., et al., 1995, Multiscale seismic waveform inversion: Geophysics, 60(5), 1457−1473.
[4] Chi, B., Dong, L., and Liu, Y., 2015, Correlation-based reflection full-waveform inversion: Geophysics, 80(4), 189−202.
[5] Choi, Y., and Alkhalifah, T., 2011, Frequency-domain waveform inversion using the unwrapped phase: 81th Annual International Meeting, SEG, Expanded Abstracts, 2576−2580.
[6] Choi, Y., and Alkhalifah, T., 2013, Frequency-domain waveform inversion using the phase derivative: Geophys. J. Int., 195(3), 1904−1916.
[7] Choi, Y., and Alkhalifah, T., 2015, Unwrapped phase inversion with an exponential damping: Geophysics, 80(5), 251−264.
[8] Di, N. C., Shipp, E. R. and Singh, S., 1999, Fast traveltime tomography and analysis of real data using semi-automated picking procedure: 69th Annual International Meeting, SEG, Expanded Abstracts, 1414−1417.
[9] Dong, L. G., Chi, B. X., Tao, J. X., et al., 2013, Objective function behavior in acoustic full-waveform inversion: Chinese Journal Geophysics, 56(10), 3445−3460.
[10] Fichtner, A., Kennett, B. L. N., Igel, H., et al., 2008, Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain: Geophys. J. Int., 175(2), 665−685.
[11] Fichtner, A., and Trampert, J., 2011, Hessian kernels of seismic data functionals based upon adjoint techniques: Geophys. J. Int., 185(2), 775−798.
[12] Hale, D., 2013, Dynamic wraping of seismic images: Geophysics, 78(2), S105−S115.
[13] Huang, C., Dong, L. G., and Chi, B. X., 2015, Elastic envelope inversion using multicomponent seismic data with filtered-out low frequency: Applied Geophysics, 12(3), 362−377.
[14] Huang, J. P., Yang, Y., Li, Z. C., et al., 2014, Comparative study among implementations of several free-surface boundaries with perfectly matched layer conditions: Acta Seismologica Sinica, 36(5), 964−977.
[15] Luo, J. R., and Wu, R. S., 2015, Seismic envelope inversion: reduction of local minima and noise resistance: Geophysical Prospecting, 63(3), 597−614.
[16] Luo, J. R., Wu, R. S., and Gao, F. C., 2016, Time-domain full-waveform inversion using instantaneous phase with damping: 86th Annual International Meeting, SEG, Expanded Abstracts, 1472−1476.
[17] Ma, Y., and Hale, D., 2013, Wave-equation reflection traveltime inversion with dynamic wraping and full-waveform inversion: Geophysics, 78(6), R223−R233.
[18] Mora, P., 1989, Inversion = migration + tomography: Geophysics, 54(12), 1575−1586.
[19] Plessix, R. É., 2006, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications: Geophys. J. Int., 167(2), 495−503.
[20] Plessix, R. É., 2013, A pseudo-time formulation for acoustic full waveform inversion: Geophys. J. Int., 192(2), 613−630.
[21] Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain--Part 1: Theory and verification in a physical scale model: Geophysics, 64(3), 888−901.
[22] Shin, C., and Min, D. J., 2006, Waveform inversion using a logarithmic wavefield: Geophysics, 71(3), R31−R42.
[23] Snieder, R., Xie, M. Y., Pica, A., et al., 1989, Retrieving both the impedance contrast and background velocity: A global strategy for the seismic reflection problem: Geophysics, 54(8), 991−1000.
[24] Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259-1266.
[25] Tejero, J. C. E., Dagnino, D., Sallares, V., et al., 2015, Comparative study of objective functions to overcome noise and bandwidth limitations in full waveform inversion: Geophys. J. Int., 203(1), 632−645.
[26] Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74(6), WCC1−WCC26.
[27] Wang, H., Singh, S. C., Audebert, F., et al., 2015, Inversion of seismic refraction and reflection data for building long-wavelength velocity models: Geophysics, 80(2), 81−93.
[28] Wu, R. S., Luo, J., and Wu, B., 2014, Seismic envelope inversion and modulation signal model: Geophysics, 79(3), WA13−WA24.
[29] Xu, S., Wang, D., Chen, F., et al., 2012, Inversion on reflected seismic wave: 82nd Annual International Meeting, SEG, Expanded Abstracts, 1−7.
[30] Zhou, W., Brossier, R., Operto, S., et al., 2015, Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation: Geophys. J. Int., 202(3), 1535−1554.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司