APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 399-405    DOI: 10.1007/s11770-017-0634-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
平面波预测滤波分离绕射波方法研究
孔雪1,王德营2,李振春3,张瑞香1,胡秋媛1
1. 中国石油大学胜利学院油气工程学院,山东东营 257061
2. 山东科技大学地球科学与工程学院,山东青岛 266590
3. 中国石油大学(华东)地球科学与技术学院,山东青岛 266555
Diffraction separation by plane-wave prediction filtering
Kong Xue1, Wang De-Ying2, Li Zhen-Chun3, Zhang Rui-Xiang1, and Hu Qiu-Yuan1
1. College of Petroleum Engineering, Shengli College, China University of Petroleum, Dongying 257061, China.
2. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
3. School of Geosciences, China University of Petroleum (Hua Dong), Qingdao 266555, China.
 全文: PDF (752 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规地震资料处理通常将地震波场当作反射波处理,绕射波的存在会降低处理成果的分辨率,因此将其当做干扰噪音进行压制。然而,绕射波往往包含了非常重要的地质信息(裂缝、溶洞、断层等特殊构造),即使偏移将绕射波归位,因为绕射波能量较弱也会被反射同相轴遮盖。将反射波和绕射波进行分离并单独成像处理,将提高绕射目标构造的成像精度。根据在平面波域反射波拟线性、绕射波拟双曲的形态差异,本文利用平面波预测滤波技术对平面波炮记录进行波场分离。首先,采用平面波解构滤波器估算地震同相轴的局部倾角,利用局部倾角信息预测并提取反射波,然后从全波场中减去反射波,间接分离出绕射波,对绕射波成像可获得高分辨率的绕射目标体成像结果。通过对2D SEG盐丘模型进行波场分离与成像,分析表明:本文采用的平面波预测滤波技术解决了平面波解构滤波的极性反转问题,保持了绕射波原有的相位信息,保证了波场分离后的绕射波场保真度,成像结果表明用平面波预测滤波方法提取的绕射波进行偏移可改善非均质目标体的成像精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词平面波预测滤波   波场分离   绕射波     
Abstract: Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. However, wave diffractions generally originate from geological structures, such as fractures, karst caves, and faults. The wave diffraction energy is much weaker than that of the reflections. Therefore, even if wave diffractions can be traced back to their origin, their energy is masked by that of the reflections. Separating and imaging diffractions and reflections can improve the imaging accuracy of diffractive targets. Based on the geometrical differences between reflections and diffractions on the plane-wave record; that is, reflections are quasi-linear and diffractions are quasi-hyperbolic, we use plane-wave prediction filtering to separate the wave diffractions. First, we estimate the local slope of the seismic event using plane-wave destruction filtering and, then, we predict and extract the wave reflections based on the local slope. Thus, we obtain the diffracted wavefield by directly subtracting the reflected wavefield from the entire wavefield. Finally, we image the diffracted wavefield and obtain high-resolution diffractive target results. 2D SEG salt model data suggest that the plane-wave prediction filtering eliminates the phase reversal in the plane-wave destruction filtering and maintains the original wavefield phase, improving the accuracy of imaging heterogeneous objects.
Key wordsPlane wave   prediction filter   separation   diffraction   
收稿日期: 2016-10-26;
基金资助:

本研究由国家自然科学基金(编号:41104069)、国家“973”课题(编号:2011CB202402)、山东省高等学校科技计划项目(编号:J17KA197)和中国石油大学胜利学院春晖计划项目(编号:KY2015003)联合资助。

引用本文:   
. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
. Diffraction separation by plane-wave prediction filtering[J]. APPLIED GEOPHYSICS, 2017, 14(3): 399-405.
 
[1] Bansal, R., and Imhof, M. G., 2005, Diffraction enhancement in prestack seismic data: Geophysics, 70(3), V73−V79.
[2] Burnett, W. A., Klokov, A., Fomel, S., et al., 2015, Seismic diffraction interpretation at Piceance Creek: Interpretation, 3(1), SF1−SF14.
[3] Cheng, J. B., Wang, H. Z., and Ma, Z. T., 2001, Pre-stack depth migration with finite-difference method in frequency-space domain: Chinese Journal of Geophysics, 4(3), 389−395.
[4] Decker, L., and Klokov, A., 2014, Diffraction extraction by plane-wave destruction of partial images: 84th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 3862−3867.
[5] Decker, L., and Fomel, S., 2013, Comparison of seismic diffraction imaging techniques: plane wave destruction versus apex destruction: 83th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 4054−4059.
[6] Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67(6), 1946−1960.
[7] Fomel, S., 2010, Predictive painting of 3-D seismic volumes: Geophysics, 75(4), A25−A30.
[8] Fomel, S., Landa, E., and Taner, M. T., 2007, Poststack velocity analysis by separation and imaging of seismic diffractions: Geophysics, 72(6), U89−U94
[9] Khaidukov, V., Landa, E., and Moser, T. J., 2004, Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution: Geophysics, 69(6), 1478−1490.
[10] Klokov, A., Baina, R., and Landa, E., 2010a, Separation and imaging of seismic diffractions in dip angle domain: 72th EAGE Conference and Exhibition, Extended Abstracts, G40.
[11] Klokov, A., Baina, R., Landa, E., et al., 2010b, Diffraction imaging for fracture detection: synthetic case study: 80th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 3354−3358.
[12] Klokov, A., and Sergey, F., 2012, Separation and imaging of seismic diffractions using migrated dip-angle gathers: Geophysics, 77(6), S131−143.
[13] Landa, E., Fomel, S., and Reshef, M., 2008, Separation, imaging, and velocity analysis of seismic diffractions using migrated dip-angle gathers: 78th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 2176−2180.
[14] Landa, E., and Keydar, S., 1998, Seismic monitoring of diffraction images for detection of local heterogeneities: Geophysics, 63(3), 1093−1100.
[15] Landa, E., Shtivelman, V., and Gelchinsky, B., 1987, A method for detection of diffracted waves on common-offset sections: Geophysical Prospecting, 35(4), 359−373.
[16] Li, J. Y. and Chen, X. H., 2013, A rock-physical modeling method for carbonate reservoirs at seismic scale: Applied Geophysics, 10(1), 1−13.
[17] Li, S. J., Shao, Y., and Chen, X. Q., 2016, Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs: Applied Geophysics, 13(1), 166−178.
[18] Liu, Y., Fomel, S., and Liu, G. C., 2010, Nonlinear structure-enhancing ?ltering using plane-wave prediction: Geophysical Prospecting, 58(3), 425−427.
[19] Merzlikin, D., Fomel, S., and Bona, A., 2016, Diffraction imaging using azimuthal plane-wave destruction: 86th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 4288−4293.
[20] Moser, T., and Howard, B. C., 2008, Diffraction imaging in depth: Geophysical Prospecting, 56(5), 627−641.
[21] Reshef, M., 2008, Interval velocity analysis in the dip-angle domain: Geophysics, 73(5), VE353−VE360.
[22] Reshef, M., and Landa, E., 2009, Post-stack velocity analysis in the dip-angle domain using diffractions: Geophysical Prospecting, 57(5), 811−821.
[23] Reshef, M., and Rüger, A., 2008, Influence of structural dip angles on interval velocity analysis: Geophysics, 73(4), U13−U18.
[24] Taner, M. T., Fomel, S., and Landa, E., 2006, Separation and imaging of seismic diffractions using plane-wave decomposition: 76th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 2401−2405.
[25] Tyiasning, S., Merzlikin, D., Cooke, D., et al., 2016, A comparison of diffraction imaging to incoherence and curvature: The Leading Edge, 35(1), 86−89.
[26] Wang, D. Y., Huang, J. P., Kong, X., et al., 2017, Improving the resolution of seismic traces based on the secondary time-frequency spectrum: Applied Geophysics, 14(2), 236−246.
[1] 宫昊,陈浩,何晓,苏畅,王秀明,王柏村,严晓辉. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
[2] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[3] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[4] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[5] 陈婷, 何兵寿. 基于Poynting矢量的归一化波场分离互相关逆时偏移成像条件[J]. 应用地球物理, 2014, 11(2): 158-166.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司