APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 351-362    DOI: 10.1007/s11770-017-0635-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
水平井随钻电磁波测井与双侧向测井响应差异及其解释应用
胡松1,李军1,郭洪波2,王昌学3
1. 中国石化石油勘探开发研究院,北京 100083
2. 中国石油塔里木油田分公司勘探开发研究院,新疆库尔勒 841000
3. 中国石油勘探开发研究院,北京 100083
Analysis and application of the response characteristics of DLL and LWD resistivity in horizontal well
Hu Song1, Li Jun1, Guo Hong-Bo2, and Wang Chang-Xue3
1. Petroleum Exploration & Production Research Institute, SINOPEC, Beijing 100083, China.
2. Research Institute of Petroleum Exploration & Development, Tarim Oil Field Branch Company, CNPC, Xinjiang 841000, China.
3. Research Institute of Petroleum Exploration & Development, CNPC, Bejing 100083, China.
 全文: PDF (1384 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 大斜度井/水平井中,随钻电磁波电阻率测井与双侧向测井由于测量原理不同,引起的测井响应特征有着较大差别。首先依据积分方程法模拟了随钻电磁波电阻率测井在大斜度井/水平井中的测井响应特征,采用三维有限元素法模拟了双侧向测井在大斜度井/水平井中的测井响应特征,然后对比分析了二者在水平地层中的测井响应差异和产生的原因。结果表明,水平井中随钻电磁波电阻率测井和双侧向测井响应差异的主要影响因素有:不同井斜角、地层各向异性、地层界面以及泥浆侵入等。随着相对井斜角的增大,随钻电磁波电阻率测井在地层界面处的测井响应异常大,而双侧向测井在地层界面附近受围岩影响逐渐变得平滑;随着相对井斜角的增加,各向异性的影响逐渐增大,但各向异性对双侧向测井的影响程度要小于对随钻电磁波电阻率的影响。这些差异如不能正确认识将导致水平井解释过程中出现偏差。最后根据实际资料,分析如何这些差异进行水平井测井解释。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词响应特征   双侧向测井   随钻电磁波电阻率   水平井   数值模拟     
Abstract: There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.
Key wordsresponse characteristic   dual laterolog   LWD resistivity   horizontal well   numerical modeling   
收稿日期: 2016-08-26;
基金资助:

本研究由国家重大科技专项(编号:2016ZX05014-002-001、2017ZX05005-005-005和2016ZX05002- 005-001)联合资助。

引用本文:   
. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
. Analysis and application of the response characteristics of DLL and LWD resistivity in horizontal well[J]. APPLIED GEOPHYSICS, 2017, 14(3): 351-362.
 
[1] Allen, D. F., Anderson, B. I., Barber, T. D., et al., 1993, Supporting Interpretation of Complex, Axisymmetric Invasion by Modeling Wireline Induction and 2-MHz LWD Resistivity Tools: SPWLA 34th Annual Logging Symposium, Calgary, Alberta, Canada, 13-16 June, Paper N.
[2] Anderson, B., Bonnet, S., Rosthai, R., et al., 1992, Response of 2MHz LWD resistivity and wireline induction tools in dipping beds and laminated formations: Log Analyst, 33(5), 461−475.
[3] Chew, W. C., and Wang, Y. M., 1990, Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method: IEEE Transactions on Medical Imaging, 9(2), 218−225.
[4] Chu, Z. H., Gao J., Huang L. J., et al., 2007, Geophysical logging method and principle (first volume): Petroleum Industry Press, China, 114−122.
[5] Darwin, V. E., and Julian M. S., 2008, Well Logging for Earth Scientists (Second Edition): Springer, Netherlands, 213−244.
[6] Faivre O., Barber T., Jammes L., et al., 2002, Using Array Induction and Array Laterolog Data to Characterize Resistivity and Anisotropy in Vertical Wells: SPWLA 43th Annual Logging Symposium, Oiso, Japan, 2-5 June, Paper M.
[7] Fan, Y. R., Wang, L., Li, H., et al., 2014, Numerical simulation and corresponding characteristic analysis of dual laterolog for cave reservoirs: Journal of China University of Petroleum (Edition of Natural Science), 38(6), 40−46.
[8] Gianzero, S., Chemali, R., and Su, S. M., 1989, Induction Resistivity and MWD tools in horizontal wells: 30th Annual Logging Symposium, SPWLA, Denver, Colorado, America, 11-14 June, Paper N.
[9] Gregory, A. N., Walter, L. A., and Gerald, W. H., 1989, Effect of conductive host rock on borehole transient electromagnetic responses: Geophysics, 54(5), 598−608.
[10] Hagiwara, T., 1996, EM log response to anisotropic resistivity in thinly laminated formations with Emphasis on 2-MHz resistivity devices: SPE Annual Technical Conference and Exhibition, 25-28 September, New Orleans, USA, SPE 28426.
[11] Hue, Y., Teixeira, F. L., Martin, L. S., et al., 2005, Three-Dimensional simulation of eccentric LWD tool response in boreholes through dipping formation: Geoscience and Remote Sensing, 43(2), 257−268.
[12] Jin, J. M., 1993, The finite element method in electromagnetics: Wiley-IEEE Press, New York, 8−15.
[13] Koelman, J. M. V. A., Van, d. H. M., Lomas, A. T., et al., 1996, Interpretation of Resistivity Logs in Horizontal wells an Application to Complex Reservoirs from Oman: 16-19 June, 37th Annual Logging Symposium, SPWLA, New Orleans, Louisiana, America, Paper G.
[14] Li, H., Shen, Y. Z., and Zhu, X. F., 2016, Numerical simulation of resistivity LWD tool based on higher-order vector finite element: Journal of Petroleum Exploration & Production Technology, 6(3), 533−543.
[15] Michalski, K. A., and Zheng, D., 1990, Electromagnetic Scattering and Radiation by Surfaces of Arbitrary Shape in Layered Media, Part I: Theory: IEEE Transactions on Antennas and Propagation, 38(3), 335−344.
[16] Nam, M. J., Pardo, D., and Torres-Verdín, C., 2010, Assessment of delaware and gronirgen effects on dual-laterolog measurements with a self-adaptive hp finite-element method: Geophysics, 75(6), F143−F149.
[17] Peng, Z., and Lee, J. F., 2012, Comparisons of heterogeneous multiscale finite element method and localized homogenization process for modeling aperiodic metamaterials, IEEE Antennas and Propagation Society, AP-S International Symposium (Digest). doi:10.1109/ APS.2012.6348588.
[18] Rodr'guez-Rozas, A., and Pardo, D., 2016, A Priori Fourier Analysis for 2.5D Finite Elements Simulations of Logging-While-Drilling (LWD) Resistivity Measurements: Procedia Computer Science, 80, 782−791.
[19] Serry, A. M., Budebes, S. A., and Aboujmeih, H., 2014, What is Rt? logging-while-drilling and wireline resistivity measurements Spotlighted: an offshore case study in Abu Dhabi: 55th Annual Logging Symposium, SPWLA, Abu Dhabi, UAE, 18-22 May, Paper HH.
[20] Tai, C. T., 1971, Dyadic green's functions in electromagnetic theory: Intext Educational Publishers, Scranton, 110−125.
[21] Tan, M. J., Gao J, Zou Y. L., et al., 2012, Environment correction method of dual laterolog in directional well: Chinese J. Geophys. (in Chinese), 55(4), 1422−1432.
[22] Trowbridge, C. W., 1972, Progress in magnet design by computer: Proceedings of the Fourth International Conference on Magnet Technology, Brookhaven, USA, 617−626.
[23] Wang, T., and Fang, S., 2001, 3-D electromagnetic anisotropy modeling using finite differences: Geophysics, 66(5), 1386−398.
[24] Wang, H. M., 1999, Finite element analysis of resistivity logging: PhD Thesis, University of Houston.
[25] Wang, H. M., Liang, C., and Zhang, G. J., 2000, Dual laterolog response in 3-D environments: Petrophysics, 41(3), 234−241.
[26] Wei, B. J., and Liu, Q. H., 2007, Fast algorithm for simulating 3-D electromagnetic inverse scattering in horizontally stratified medium via DTA: Chinese J. Geophys. (in Chinese), 50(5), 1595−1605.
[27] Wei, B. J., Wang, S. S., Ou, Y. F., et al., 2011, Simulating the response of induction logging while drilling tools by vector eigenfunction expansion formulae for dyadic Green’s functions: Chinese J. Geophys. (in Chinese), 54(5), 1391−1401.
[28] Xu, W., Ke, S. Z., Li, A. Z., et al., 2014, Response simulation and theoretical calibration of a dual-induction resistivity LWD tool: Applied Geophysics, 11(1), 31-40.
[29] Yong, S. H., and Zhang, C. M., 2007, Logging data processing and comprehensive interpretation: China University of Petroleum Press, China, 152−284.
[30] Yang, W., and Torres-Verdín, C., 2005, Numerical simulation of dual-laterolog measurements in the presence of dipping, anisotropic, and invaded rock formations: Seg Expanded Abstracts, (1), 344.
[31] Zhang, G. J., 1986, Electrical logging (second volume): Petroleum Industry Press, China, 1−40.
[32] Zhou, Q., 2008, Log interpretation in high-deviation wells through user-friendly tool-response processing: 49th Annual Logging Symposium, SPWLA, Edinburgh, Scotland, UK, 25-28 May, Paper AAAA.
[33] Zhou, Q., Bean, C., Bell, C., et al., 2007, Practical approach towards modeling and inversion applications in high deviation well interpretation: SPWLA Middle East Regional Symposium, Abu Dhabi, UAE, 15-19 April, Paper Q.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 刘鹤,王兵,陶果,张阔,岳文正. 水平井及斜度井声波测井响应正演模拟研究[J]. 应用地球物理, 2017, 14(3): 337-350.
[4] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[5] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[6] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[7] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[8] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[9] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[10] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[11] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[12] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
[13] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[14] 刘云, 王绪本, 王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
[15] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司