APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 337-350    DOI: 10.1007/s11770-017-0637-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
水平井及斜度井声波测井响应正演模拟研究
刘鹤1,王兵1,陶果2,张阔3,4,1,岳文正1
1. 油气资源与探测国家重点实验室,中国石油大学(北京),北京 102249
2. 地球科学学院,Khalifa University,阿布扎比 2533
3. 中国电子信息产业发展研究院,北京 100048
4. 北京赛迪出版传媒有限公司,北京 100048
Study on the simulation of acoustic logging measurements in horizontal and deviated wells
Liu He1, Wang Bing1, Tao Guo2, Zhang Kuo3,4,1, and Yue Wen-Zheng1
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. Department of Petroleum Geoscience, Khalifa University, Abu Dhabi, United Arab Emirates 2533.
3. China Center for Information Industry Development, Beijing 100048, China.
4. Beijing CCID Publishing & Media Co., Ltd., Beijing 100048, China.
 全文: PDF (1216 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规声波测井解释方法建立在各向同性地层中的垂直井基础之上,对各向异性地层中的水平井和斜度井并不适用。在水平井和斜度井的钻井过程中,岩屑会溅到井壁并最终在井壁底部形成一层薄岩屑层。同时,高速层和各向异性也可能会影响声波时差的测量。本文采用结合了Hybrid-PML的交错网格时域有限差分方法(SGS-FDTD),研究阵列声波仪器在各向异性介质中的水平井和斜度井条件下,不同因素对测得时差所带来的影响。模拟结果揭示了声波时差在高速层,薄岩屑层,井斜角,层厚,各向异性等不同影响因素下的相应规律。我们发现当波长远小于井壁与高速层的距离时,能够准确测得目的层时差;然而在两者处于同一量级时的近场条件下,几何声学理论不再适用;当井眼底部存在岩屑层时,费马原理依旧适用,对真实时差测量没有影响;在各向异性地层环境下,井斜角的增大使得测得时差由垂直向时差逐渐趋近于水平向时差;对于特定源距的声系,仪器在目的层中所移动的距离超过一定距离时,方可获得薄层时差值。基于不同井斜角和不同各向异性大小均匀TI地层模型的模拟结果,绘制了时差估计图版,可以对任意井斜角和各向异性比的模型进行时差的定量估计。通过对不同声系和不同弹性参数的模拟实验,证明了这种时差估计方法对TI地层中的水平井和斜度井准确有效。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词水平井   斜度井   高速层   岩屑层   声波时差估计     
Abstract: The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based on systematical simulations with different dipping angles and anisotropy in homogenous TI media, slowness estimation charts are established to quantitatively determine the slowness at any dipping angle and for any value of the anisotropic ratio. Synthetic examples with different acoustic logging tools and different elastic parameters demonstrate that the acoustic slowness estimation method can be conveniently applied to horizontal and deviated wells in TI formations with high accuracy.
Key wordsHorizontal well   deviated well   high velocity layer   cuttings bed   acoustic slowness estimation   
收稿日期: 2017-07-17;
基金资助:

本研究由国家自然科学基金项目(编号:41204094)和中国石油大学(北京)科研基金项目(编号:2462015YQ0506)资助。

引用本文:   
. 水平井及斜度井声波测井响应正演模拟研究[J]. 应用地球物理, 2017, 14(3): 337-350.
. Study on the simulation of acoustic logging measurements in horizontal and deviated wells[J]. APPLIED GEOPHYSICS, 2017, 14(3): 337-350.
 
[1] Bayliss, A., Jordan, K. E., LeMesurier, B. J., et al., 1986, A fourth-order accurate finite-difference scheme for the computation of elastic waves: Bulletin of the Seismological Society of America, 76(4), 1115−1132.
[2] Bigelow, E. L., and Cleneay, C. A., 1992, A new frontier: log interpretation in horizontal wells: 33rd Annual Logging Symposium, SPWLA, 14−17 June, Texas, USA.
[3] Cheng, N. Y., 1994, Borehole wave propagation in isotropic and anisotropic media: three dimensional finite difference approach: PhD thesis, Massachusetts Institute of Technology.
[4] Cheng, N. Y., Cheng, C. H., and Toksöz, M. N., 1995, Borehole wave propagation in three dimensions: The Journal of the Acoustical Society of America, 97, 3483−3493.
[5] Chen, M. Y., He, X. P., and Jin, X. H., 2013, Study on acoustic slowness response features in horizontal wells: World Well Logging Technology (in Chinese), 4, 38−41.
[6] Clavier, C., 1991, The challenge of logging horizontal wells: The Log Analyst, 32(2), 63−84.
[7] Cong, J. S., and Qiao, W. X., 2008, Simulated response of acoustic log in horizontal borehole placing on interface of two formations: Well Logging Technology (in Chinese), 32(1), 29−32.
[8] Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equation: Geophysics, 51(1), 54−66.
[9] Gianzero, S. C., Chemali, R. E., and Su, S. M., 1992, Induction, resistivity, and MWD tools in horizontal wells: SPE International Meeting on Petroleum Engineering, 24−27 March, Beijing, China, SPE 22347, 191−199.
[10] Hu, Z. P., Guan, L. P., Gu, L. X., et al., 2004, Wide angle seismic wave field analysis and imaging method below the high velocity shield layers: Chinese Journal of Geophysics (in Chinese), 47(1), 88−94.
[11] Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation: Geophysics, 72(5), 155−167.
[12] Leslie, H. D., and Randall, C. J., 1992, Multipole sources in boreholes penetrating anisotropic formations: Numerical and experimental results: The Journal of the Acoustical Society of America, 91, 12-27.
[13] Levander, A. R., 1988, Fourth-order ?nite-difference P-SV seismograms: Geophysics, 53(11), 1425−1436.
[14] Liang, K., 2009, The study on propagation feature and forward modeling of seismic wave in TI media: PhD thesis, China University of Petroleum, Dongying, 17−21.
[15] Lin, W. J., Wang, X. M., and Zhang, H. L., 2006, Acoustic wave propagation in a borehole penetrating an inclined layered formation: Chinese Journal of Geophysics (in Chinese), 49(1), 284−294.
[16] Liu, J., Ma, J., and Yang, H., 2009, The study of perfectly matched layer absorbing boundaries for SH wave fields: Applied Geophysics, 6(3), 267.
[17] Madariaga, R., 1976, Dynamics of an expanding circular fault: Bulletin of the Seismological Society of America, 66(3), 639−666.
[18] Mallan, R. K., Ma, J., and Torres-Verdín, C., 2009, 3D Numerical simulation of borehole sonic measurements acquired in dipping, anisotropic, and invaded formations: 50th Annual Logging Symposium, SPWLA, 21-24 June, Texas, USA.
[19] Meza-Fajardo, K. C., and Papageorgiou, A. S., 2008, A nonconvolutional, split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis: Bulletin of the Seismological Society of America, 98(4), 1811−1836.
[20] Passey, Q. R., Yin, H., Rendeiro, C. M., and Fitz, D. E., 2005, Overview of high-angle and horizontal well formation evaluation: issues, learning, and future directions: 46th Annual Logging Symposium, SPWLA, 26−29 June, New Orleans, USA.
[21] Singer, J. M., 1992, An example of log interpretation in horizontal wells: The Log Analyst, 33(2), 85−95.
[22] Song, R., Ma, J., and Wang, K., 2005, The application of the nonsplitting perfectly matched layer in numerical modeling of wave propagation in poroelastic media: Applied Geophysics, 2(4), 216−222.
[23] Tang, X. M., and Cheng, A., 2004, Quantitative borehole acoustic methods: Petroleum Industry Press Beijing, 24, 20−43.
[24] Tao, G., Gao, K., Wang, B., and Ma, Y., 2007, Application of multipole array sonic logging to acid hydralic fracturing: Applied Geophysics, 4(2), 133−137.
[25] Tao, G., He, F. J., Yue, W. Z., and Chen, P., 2008, Processing of array sonic logging data with multi-scale STC technique: Petroleum Science, 5, 238.
[26] Tao, G., Zhang, Y. S., and Zhang, H. E., 2001, 3D finite difference simulating program for acoustic logging: Well Logging Technology (in Chinese), 25(4), 273−277.
[27] Virieux, J., 1984, SH wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 49(11), 1933−1957.
[28] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 51(4), 889−901.
[29] Wang, H. G., Liu, X. S., and Ding, G., et al., 1995, An experimental study of transport of drilling cutting in a horizontal well: Acta Petrolei Sinica (in Chinese), 16(4), 125−132.
[30] Wang, H., Tao, G., and Shang, X. F., 2013, Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes: Applied Geophysics, 10(4), 384−396.
[31] Wang, R. J., Torres-Verdín, C., Huang, S., and Herrera, W., 2015, Interpretation of sonic waveforms acquired in high-angle and horizontal wells: 56th Annual Logging Symposium, SPWLA, 18−22 July, Oklahoma, USA.
[32] Wei, Z. T., and Chen, X. L., 2014, Analysis of borehole acoustic field and establishment of acoustic slowness correction chart in deviated formations: Acta Acustica (in Chinese), 40(3), 437−445.
[33] Winterstein, D. F., 1990, Velocity anisotropy terminology for geophysicists: Geophysics, 55(8), 1070−1088.
[34] Wu, G. C., 2006, Propagation and imaging of seismic waves in anisotropic media: China University of Petroleum Press, Shandong, 26−32.
[35] Zhang, K., Tao, G., Li, J. X., et al., 2014, 3D FDM modeling of acoustic reflection logging in a deviated well: 76th EAGE Annual Meeting, Expanded Abstracts, Th P10 03.
[1] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司