APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (3): 325-336    DOI: 10.1007/s11770-017-0628-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析
杨志强1,何涛1,邹长春2
1. 北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871
2. 地下信息探测技术与仪器教育部重点实验室(中国地质大学, 北京),北京 100083
Shales in the Qiongzhusi and Wufeng–Longmaxi Formations: a rock-physics model and analysis of the effective pore aspect ratio
Yang Zhi-Qiang1, He Tao1, and Zou Chang-Chun2
1. Key Laboratory of Orogenic Belts and Crustal Evolution (School of Earth and Space Sciences, Peking University), Ministry of Education, Beijing 100871, China.
2. Key Laboratory of Geodetection (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China.
 全文: PDF (884 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 四川盆地及其周缘地区的筇竹寺组和五峰-龙马溪组页岩是目前国内页岩气勘探的主要层位之一,但其地震弹性性质响应规律的区域性特征需要开展相关的实验和理论研究工作予以明确。本研究对干燥状态下的筇竹寺组和五峰-龙马溪组页岩的露头样品进行了超声波速度测试,系统地分析了地震弹性性质随页岩岩石学特征的变化规律。研究结果表明,孔隙度与粘土矿物含量呈正相关、与脆性矿物含量呈负相关;粘土、石英、长石和碳酸盐构成页岩岩石基质,与孔隙共同构成页岩岩石骨架,而干酪根和黄铁矿主要赋存于孔隙中,与页岩骨架的耦合较弱。通过将全部连通性孔隙近似等效于仅存在于骨架粘土矿物之内和采用Gassmann流体替换类似的思路处理干酪根和黄铁矿,可以较为简单地将自相容近似(SCA)理论、微分等效介质模型(DEM)和Gassmann方程组合起来构建研究区页岩的地震岩石物理等效模型。该模型通过关键参数等效孔隙纵横比(采用研究区样品平均值或者由碳酸盐含量进行估算)可以较为准确地预测筇竹寺和五峰-龙马溪组页岩的纵波速度,验证了等效模型的有效性和较广的适用性,可为筇竹寺组和五峰-龙马溪组页岩气储层的测井解释和地震“甜点”预测提供依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词筇竹寺组页岩   五峰-龙马溪组页岩   地震岩石物理   等效模型   等效孔隙纵横比     
Abstract: The shales of the Qiongzhusi Formation and Wufeng–Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann’s equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.
Key wordsQiongzhusi   Wufeng–Longmaxi   shale   pore aspect ratio   Gassman equation   
收稿日期: 2016-07-09;
基金资助:

本研究由国家自然科学基金项目(编号:41274185和41676032)联合资助。

引用本文:   
. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
. Shales in the Qiongzhusi and Wufeng–Longmaxi Formations: a rock-physics model and analysis of the effective pore aspect ratio[J]. APPLIED GEOPHYSICS, 2017, 14(3): 325-336.
 
[1] Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal layering: Journal of Geophysical Research, 67(11), 4427-4440.
[2] Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media I. Spherical inclusions: Journal of the Acoustical Society of America, 68(6), 1809-1819.
[3] Berryman, J. G., 1992, Single-scattering approximations for coefficients in Biot’s equations of poroelasticity: Journal of the Acoustical Society of America, 91(2), 551-571.
[4] Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials: Journal of the Mechanics and Physics of Solids, 13(4), 223-227.
[5] Cheng, C. H., and Toksöz, M. N., 1979, Inversion of seismic velocities for the pore aspect ratio spectrum of a rock: Journal of Geophysical Research Atmospheres, 84(B13), 7533-7543.
[6] Cleary, M. P., Chen, I. W., and Lee, S. M., 1980, Self-Consistent Techniques for Heterogeneous Media: Journal of the Engineering Mechanics Division, 106(5), 861-887.
[7] Deng, J. X., Wang, H., Zhou, H., Liu, Z. H., Song, L. T., and Wang, X. B., 2015, Microtexture, seismic rock physical properties and modeling of Longmaxi Formation shale: Chinese Journal of Geophysics (in Chinese), 58(6), 2123-2136.
[8] Deng, K. L., 1992, Formation and evolution of Sichuan Basin and domains for oil and gas exploration: Natural Gas Industry (in Chinese), 12(5), 7-12.
[9] Gassmann, F., 1951, Über die Elastizität poröser Medien: Veirteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1-23.
[10] Han, T. C., Best, A. I., Macgregor, L. M., Sothcott, J. and Minshull, T. A., 2011, Joint elastic-electrical effective medium models of reservoir sandstones: Geophysical Prospecting, 59(4), 777-786.
[11] Hill, R., 1965, A self-consistent mechanics of composite materials: Journal of the Mechanics and Physics of Solids, 13(4), 213-222.
[12] Huang, X. R., Huang, J. P., Li, Z. C., Yang, Q. Y., Sun, Q. X. and Cui, W., 2015, Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs: Applied Geophysics, 12(1), 11-22.
[13] Jia, C. Z., Zheng, M., and Zhang, Y. F., 2012, Unconventional hydrocarbon resources in China and the prospect of exploration and development: Petroleum Exploration and Development (in Chinese), 39(2), 129-136.
[14] Kuster, G. T., and Toksöz, M. N., 1974, Velocity and attenuation of seismic waves in two phase media: Part I: Theoretical formulation: Geophysics, 39(5), 587-606.
[15] Li, H. B., and Zhang, J., 2010, Modulus ratio of dry rock based on differential effective-medium theory: Geophysics, 75(2), N43-N50.
[16] Li, H. B., and Zhang, J., 2012, Analytical approximations of bulk and shear moduli for dry rock based on the differential effective medium theory: Geophysical Prospecting, 60(2), 281-292.
[17] Li, H. B., Zhang, J., and Yao, F., 2013, Inversion of effective pore aspect ratios for porous rocks and its applications: Chinese Journal of Geophysics (in Chinese), 56(2), 608-615.
[18] Li, Z. Y., 2015, Shale gas reservoir pore structure model and the physical properties test method development: Ground Water (in Chinese), 37(1), 211-213.
[19] Marion, D., Nur, A., Yin, H., and Han, D., 1992, Compressional velocity and porosity in sand-clay mixtures: Geophysics, 57(4), 554-563.
[20] Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media (2nd Edition): Cambridge University Press, New York.
[21] Mukerji, T., Berryman, J., Mavko, G., and Berge, P., 1995, Differential effective medium modeling of rock elastic moduli with critical porosity constraints: Geophysical Research Letters, 22(5), 555-558.
[22] Norris, A. N., 1985, A differential scheme for the effective moduli of composites: Mechanics of Materials, 4(1), 1-16.
[23] Sams, M. S., and Andrea, M., 2001, The effect of clay distribution on the elastic properties of sandstones: Geophysical Prospecting, 49(1), 128-150.
[24] Wang, Y., Zhu, Y. M., Chen, S. B., Zhang, X., and Zhang, J. S., 2013, Formation conditions of shale gas in Lower Cambrian Niutitang formation, northwestern Hunan: Journal of China University of Mining Technology (in Chinese), 42(4), 586-594.
[25] Wu, T. T., 1966, The effect of inclusion shape on the elastic moduli of a two-phase material: International Journal of Solids & Structures, 2(1), 1-8.
[26] Xiao, Z. H., Wang, C. H., Yang, R. F., Feng T., Wang, Q. R., Huang, Y. R., Chen, X. Y., and Deng, Y., 2013, Reservoir Conditions of Shale Gas in the Lower Cambrian Niutitang Formation, Northwestern Hunan: Acta Geologica Sinica (in Chinese), 87(10), 1612-1623.
[27] Xu, S. Y., and White, R. E., 1995, A new velocity model for clay-sand mixture: Geophysical Prospecting, 43(1), 91-118.
[28] Yan, X. F., Yao, F. C., Cao, H., Ba, J., Hu, L. L., and Yang, Z. F., 2011, Analyzing the mid-low porosity sandstone dry frame in central Sichuan based on effective medium theory: Applied Geophysics, 8(3), 163-170.
[29] Zhang, G. Z., Li, C. C., Yin, X. Y., and Zhang, J. Q., 2012, A shear velocity estimation method for carbonate rocks based on the improved Xu-White model: Oil Geophysical Prospecting (in Chinese), 47(5), 717-722.
[30] Zhang, X. L., Li, Y. F., Lu, H. M., Yan, J. P., Tuo, J. C., and Zhang, T. W., 2013, Relationship between organic matter characteristics and depositional environment in the Silurian Longmaxi Formation in Sichuan Basin: Journal of China Coal Society (in Chinese), 38(5), 851-856.
[31] Zhong, T. X., 2012, Characteristics of pore structure of marine shales in South China: Natural Gas Industry (in Chinese), 32(9), 1-4, 21.
[32] Zhu, C., Guo, Q. X., Gong, Q. S., Liu, Z. G., Li, S. M. and Huang, G. P., 2015, Prestack forward modeling of tight reservoirs based on the Xu-White model: Applied Geophysics, 12(3), 421-431.
[33] Zimmerman, R. W., 1991, Elastic moduli of a solid containing spherical inclusions: Mechanics of Materials, 12(1), 17-24.
[1] 黄欣芮, 黄建平, 李振春, 杨勤勇, 孙启星, 崔伟. 基于各向异性致密砂岩油储层的地震岩石物理建模及脆性指数研究[J]. 应用地球物理, 2015, 12(1): 11-22.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司