APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 291-300    DOI: 10.1007/s11770-017-0618-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
类中梯装置三维大功率激电成像技术研究
王珺璐1,林品荣1,王萌2,李荡1,李建华1

1. 中国地质科学院地球物理地球化学勘查研究所,河北,廊坊 065000
2. 中国国土资源航空物探遥感中心,北京 100083
Three-dimensional tomography using high-power induced polarization with the similar central gradient array
Wang Jun-Lu1, Lin Pin-Rong1, Wang Meng2, Li Dang1, and Li Jian-Hua1
1. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China.
2. China Aero Geophysics Survey & Remote Sensing Center foe Land and Resources, Beijing 100083, China.
 全文: PDF (930 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 类中梯装置三维激电成像技术兼顾了激电测深与激电剖面二者的特点,能快捷高效的获得测区三维电阻率及极化率信息,空间分辨率高,探测深度大。本文从类中梯装置的数据采集方式入手,阐述了采用类中梯装置进行三维激电成像的工作方式.建立了一个三维地电模型,采用类中梯装置进行三维正演模拟,并进行反演及成像。数值模拟结果表明,采用类中梯装置进行三维激电成像能较好地刻画实际地电模型的特点。以甘肃省某多金属矿为例,利用阵列式电磁法综合测量系统,进行了三维大功率激电成像技术的应用研究。实际应用结果表明,采用三维激电成像技术,可以多角度、多细节显示测区地下介质电阻率、极化率的分布情况,明确电性突变界面的延展状态,快速圈定成矿有利区。该研究对多金属矿产勘探等领域具有一定的指导性意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词类中梯装置三维激电成像技术   电磁法综合测量系统   三维正演   三维反演   三维可视化     
Abstract: Induced polarization (IP) 3D tomography with the similar  central gradient array combines IP sounding and IP profiling to retrieve 3D resistivity and polarization data rapidly. The method is characterized by high spatial resolution and large probing depth. We discuss data acquisition and 3D IP imaging procedures using the central gradient array with variable electrode distances. A 3D geoelectric model was constructed and then numerically modeled. The data modeling results suggest that this method can capture the features of real geoelectric models. The method was applied to a polymetallic mine in Gansu Province. The results suggest that IP 3D tomography captures the distribution of resistivity and polarization of subsurface media, delineating the extension of abrupt interfaces, and identifies mineralization.
Key words3D   IP   tomography   central gradient   inversion   visualization   
收稿日期: 2015-02-20;
基金资助:

本研究由国家高技术研究发展计划(863子课题)(编号:2014AA06A610)、中国地质科学院基本科研业务费专项经费(编号:YYWF201632)和国家重大科学仪器设备开发专项(编号:2011YQ050060)联合资助。

引用本文:   
. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
 
[1] Cardarelli, E., Cercato, M., and Di Filippo, G., 2007, Assessing foundation stability and soil structure interaction through integrated geophysical techniques: a case history in Rome (Italy): Near Surface Geophysics, 5, 141-147.
[2] Chen, D. P., Dai, Q. W., Liu, H. F., and Feng, D. S., 2014, 3-D forward modeling and analysis of borehole-surface potential with gradient source: Journal of Central South University (Science and Technology) (inChinese), 45(1), 150-156.
[3] Dahlin, T., and Bernstone, C., 1997, A roll-along technique for 3-D resistivity data acquisition with multi-electrode arrays, Prccs. SAGEEP’97 (Symposium on the Application of Geophysics to Engineering and Environmental Problems), Reno, Nevada, 23-26 March 1997, 2, 927-935.
[4] Eaton, P., Anderson, B., Queen, S., et al., 2010, NEWDAS-the Newmont distributed IP data acquisition system: 80th SEG Annual Meeting, Expanded Abstracts, 1768-1772.
[5] Johnson, T. C., Versteeg, R. J., Ward, A., Day-Lewis, F. D., and Revil, A., 2010, Improved hydrogeophysical characterization and monitoring through high performance electrical geophysical modelling and inversion: Geophysics, 75(4), WA27-WA41.
[6] Karaoulis, M., Revil, A., Tsourlos, P., Werkema, D. D., and Minsley, B.J., 2013, IP4DI: A software for time-lapse 2D/3-D DC-resistivity and induced polarization tomography: Computers & Geosciences, 54, 164-170.
[7] Kim, J. H., Yi, M. J., Park, S. G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model: Journal of Applied Geophysics, 68(4), 522-532.
[8] LaBrecque, D. J., and Yang, X., 2001, Difference inversion of ERT data: a fast inversion method for 3-D in situ monitoring: Journal of Environmental and Engineering Geophysics, 5, 83-90.
[9] Li, Y., and Oldenburg, D., 2000, 3-D inversion of induced polarization data: Geophysics, 65, 1931-1945.
[10] Lin, P. R., Guo, P., Shi, F. S., Zheng, C. J., Li, Y., Li, J. H., and Xu, B. L., 2010, A study of the techniques for large depth and multi-function electromagnetic survey: Acta Geoscientica Sinica (inChinese), 31(2),149-154.
[11] Lin, P. R., Zheng, C. J., Shi, F. S., Guo, P., Xu, B. L., and Zhao, Z. Y., 2006, The research of integrated electromagnetic method system: Acta Geologica Sinica (in Chinese), 80(10),1539-1548.
[12] Loke, M. H., and Barker, R. D., 1996a, Practical techniques for 3-D resistivity surveys and data inversion: Geophysical Prospecting, 44, 499-523.
[13] Loke, M. H., and Barker, R. D., 1996b, Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method: Geophysical Prospecting, 44, 131-152.
[14] Loke, M. H., 2002, RES3-DINV - Rapid 3-D Resistivity and IP Inversion using the least squares method: Geoelectrical Imaging 2D & 3-D: Computer software manual, Geotomo Software, Malaysia.
[15] Loke, M. H., and Dahlin, T., 2002, A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion: Journal of Applied Geophysics, 49, 149-162.
[16] Ma, W., and Lin, X., 2015, The application of 3D time domain induced polarization to Kalagailei Copper-Gold mine prospecting in Xinjiang: Chinese Journal of Engineering Geophysics (in Chinese), 12(2),171-175.
[17] Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time lapse ERT imaging to watershed characterization: Geophysics, 73, G7-G17.
[18] Oldenburg, D., and Li, Y., 1994, Inversion of induced polarization data: Geophysics 59, 1327-1341.
[19] Pidlisecky, A., Haber, E., and Knight, R., 2007, RESINVM3-D: a 3-D resistivity inversion package: Geophysics 72(2), H1-H10.
[20] Pollock, D., and Cirpka, O. A., 2012, Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by electrical resistivity tomography: Water Resources Research, 48, W01505.
[21] Ruan, B. Y., and Xiong, B., 2002, A finite element modeling of three-dimensional resistivity sounding with continuous conductivity: Chinese Journal of Geophysics (inChinese), 45(1), 131-138.
[22] Santarato, G., Ranieri, G., Occhi, M., Morelli, G., Fischanger, F. and Gualerzi, D., 2001, Three-dimensional Electrical Resistivity Tomography to control the injection of expanding resins for the treatment and stabilization of foundation soils: Engineering Geology, 119, 18-30.
[23] Sun, J. J., Li, Y. G. and Nabighian, M., 2012, Lithology differentiation based on inversion of full waveform induced polarization data from Newmont Distributed IP Data Acquisition System (NEWDAS): 82nd SEG Annual Meeting, Expanded Abstracts, 1-5.
[24] Webb, D., Rowston, P., and McNeill, G., 2003, A Comparison of 2D and 3-D IP from Copper Hill NSW: ASEG 16th Geophysical Conference and Exhibition, Adelaide, February.
[25] White, M., and Gordon, N., 2003, Deep imaging: New technology lowers cost of discovery: Canadian Mining Journal, 124(3), 27-28.
[26] White, R. M. S., Collins, S., Denne, R., Hee, R., and Brown, P., 2001, A new survey design for 3-D IP inversion modelling at Copper Hill: Exploration Geophysic, 32, 152-155.
[27] Xu, S. Z., 1994, The Finite Element Method in Geophysics (in Chinese): Science Press, Beijing, 178-188.
[28] Xu, S. Z., Liu, B., and Ruan, B. Y., 1994, The finite element method for solving anomalous potential for resistivity surveys: Chinese J. Geophys. (in Chinese), 37(S2), 511-515.
[29] Yang, J. G., Zhai, J. Y., Yang, H. W., Wang, X. H., Xie, C. L., Wang, X. A., and Ren, B. C., 2010a, Metallotectonics and Prospection of the Huaniushan Exhalogene Gold Silver Lead Zinc Deposit in Beishan, Gansu Province: Geotectonica et Metallogenia (in Chinese), 34(2), 246-254.
[30] Yang, J. G., Zhai, J. Y., Yang, H. W., Wang, C. F., Xie, C. L., Wang, X. H., and Lei, Y. X., 2010b, LA-ICP-MS zircon U-Pb dating of basalt and its geological significance in Huaniushan Pb-Zn deposit, Beishan area, Gansu, China: Geological Bulletin of China (in Chinese), 29(7), 1017-1023.
[31] Zhou, B., and Greenhalgh, S. A., 2001, Finite element three-dimensional direct current resistivity modeling: accuracy and efficiency considerations: Geophysical Journal International, 145, 679-688.
[1] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[2] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[3] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[4] 曹萌,谭捍东,王堃鹏. 人工源极低频电磁法三维LBFGS反演[J]. 应用地球物理, 2016, 13(4): 689-700.
[5] 刘云鹤,殷长春,任秀艳,邱长凯. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
[6] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
[7] 王祝文, 许石, 刘银萍, 刘菁华. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
[8] 陈向斌, 吕庆田, 严加永. 斑岩铜矿床及控矿构造的3D电性结构——以沙溪铜矿为例[J]. 应用地球物理, 2012, 9(3): 270-278.
[9] 林昌洪, 谭捍东, 舒晴, 佟拓, 张玉玫. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
[10] 林昌洪, 谭捍东, 佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
[11] 蔡希玲, 刘学伟, 李虹, 吕英梅. 基于空间子集的地震数据分析方法[J]. 应用地球物理, 2009, 6(4): 354-362.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司