APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 279-290    DOI: 10.1007/s11770-017-0615-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于交叉梯度约束的CSAMT和磁法二维联合反演
王堃鹏1,谭捍东1,2,王涛3
1. 中国地质大学(北京)地球物理与信息技术学院,北京 100083
2. 中国地质大学(北京)地下信息探测技术与仪器教育部重点实验室,北京 100083
3. 中国科学院电磁辐射与探测技术重点实验室,北京 100190
2D joint inversion of CSAMT and magnetic data based on cross-gradient theory
Wang Kun-Peng1, Tan Han-Dong1,2, and Wang Tao3
1. School of Geophysics and information Technology, China University of Geosciences(Beijing), Beijing 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing 100083, China.
3. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China.
 全文: PDF (816 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了有效处理人工源的影响,本文开发了带源的CSAMT二维正反演算法,可用于全区(近区、过渡区和远区)资料的反演。引入正则化因子完成磁法二维反演,并且将模型参数调整为磁化率的对数,保证反演过程中磁化率始终为正值。本文基于交叉梯度原理,将CSAMT和磁法进行联合反演,通过搜索交叉梯度项权重的方法,避免了不同异常源引起的两种异常相互干扰的问题。理论模型算例表明基于交叉梯度的联合反演方法优于单独反演。本文开发的带源CSAMT二维正反演算法,有效处理了人工源的影响,保证了最终联合反演算法的可靠性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词可控源音频大地电磁法   磁法   数据空间反演   交叉梯度   联合反演     
Abstract: A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.
Key wordsCSAMT   magnetic method   data space inversion   cross-gradient   joint inversion   
收稿日期: 2016-12-14;
基金资助:

本研究由中央高校基本科研业务费专项资金与国家自然科学基金项目(编号:41374078)联合资助。

引用本文:   
. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. APPLIED GEOPHYSICS, 2017, 14(2): 279-290.
 
[1] Colombo, D., and Stefano, M. D., 2007, Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: Application to prestack depth imaging: The Leading Edge, 26(3), 326−331.
[2] Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52(3), 289−300.
[3] DeGroot-Hedlin, C., and Constable, S., 1990, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data: Geophysics, 55(12), 1613−1624.
[4] Fregoso E. and Gallardo L. A., 2009, Cross-gradients joint 3D inversion with applications to gravity and magnetic data: Geophysics, 74(4), L31−L42.
[5] Gallardo, L. A., and Meju, M. A., 2003, Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data: Geophysical Research Letters, 30(13), 1658−1661.
[6] Guan, Z. N., 2005, Geomagnetic Field and Magnetic Exploration: Geological Publishing House, Beijing, 107−110.
[7] Jegen, M. D., Hobbs, R. W., Tarits, P., et al, 2009, Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints: Preliminary results of sub-basalt imaging off the Faroe Shelf: Earth and Planetary Science Letters, 282(1), 47−55.
[8] Key, K., 2016, MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data: Geophysical Journal International, 207(1), ggw290.
[9] Li, Y. G., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics, 61(2), 394−408.
[10] Li, Y. G., and Oldenburg, D. W., 2003, Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method: Geophys. J. Int., 152, 251−265.
[11] Lin, C. H., Tan, H. D., Shu Q., et al., 2012, Three-dimensional conjugate gradient inversion of CSAMT data: Chinese J. Geophys. (in Chinese), 55(11), 3829−3838.
[12] McGillivray, P. R., Oldenburg, D. W., Ellis, R. G., et al., 1994, Calculation of sensitivities for the frequency-domain electromagnetic problem: Geophys. J. Int., 116, 1−4.
[13] Mitsuhata, Y., Uchida, T., and Amano, H., 2002, 2.5-D inversion of frequency-domain electromagnetic data generated by a grounded-wire source: Geophysics, 67(6), 1753−1768.
[14] Peng, M., 2012, Joint Inversion of Magnetotelluric and Teleseismic data: PhD Thesis, China University of Geosciences, Beijing.
[15] Rodi, W., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66(1), 174−187.
[16] Sasaki, Y, 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data: Geophysics, 54(2), 254−262
[17] Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data: Geophysics, 65(3), 791−803.
[18] Vozoff, K., and Jupp, D. L. B., 1977, Effective search for a buried layer: An approach to experimental design in geophysics: Exploration Geophysics, 8(1), 6−15.
[19] Yang, B., 2012, Three Dimensional Marine Controlled Source Electromagnetic Data Forward Modeling and Inversion with Topography: PhD Thesis, China University of Geosciences.
[20] Zhang, B., 2012, Research of 2D CSAMT Forward and Inversion: MSc. Thesis, China University of Geosciences, Beijing.
[21] Zhou, L. F., 2012, Two Dimensional Joint Inversion of MT and Seismic data: MSc. Thesis, China University of Geosciences, Beijing.
[1] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[2] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[3] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[4] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[5] 周峰,汤井田,任政勇,张志勇,陈煌,皇祥宇,钟乙源. 基于有限元-积分方程的三维可控源电磁法混合正演模拟[J]. 应用地球物理, 2018, 15(3-4): 536-544.
[6] 莫丹,蒋奇云,李帝铨,陈超健,张必明,刘嘉文. 基于灰色系统理论和稳健估计的人工源电磁数据处理[J]. 应用地球物理, 2017, 14(4): 570-580.
[7] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[8] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[9] 杨学立,李博,彭传圣,杨洋. 广域电磁法在我国南方海相页岩气勘探中的应用[J]. 应用地球物理, 2017, 14(3): 441-448.
[10] 底青云,付长民,安志国,许诚,王亚璐,王中兴. 地面电磁探测(SEP)系统集成及优化野外探测试验[J]. 应用地球物理, 2017, 14(3): 449-458.
[11] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[12] 杨海燕,李锋平,岳建华,郭福生,刘旭华,张华. 瞬变电磁法圆锥型场源特征与电感效应[J]. 应用地球物理, 2017, 14(1): 165-174.
[13] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[14] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[15] 方圆, 张丰麒, 王彦春. 基于双约束项的广义线性多波联合反演[J]. 应用地球物理, 2016, 13(1): 103-115.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司